Critical dynamics of non-equilibrium phase transitions

<u>Mattis Harhoff¹</u>, Sören Schlichting¹, Leon Sieke², Lorenz von Smekal^{2,3}

¹Universität Bielefeld, ²Justus-Liebig-Universität Gießen, ³Helmholtz Research Academy for FAIR

mharhoff@physik.uni-bielefeld.de

Motivation

UNIVERSITÄT

BIELEFELD

Heavy ion collisions: System undergoes **non-equilibrium trajectory** in QCD phase diagram

Near the critical point, the system is **guaranteed to fall out of equilibrium** due to the divergent relaxation time

Lattice Results for non-eq. scaling functions

Real time observables show good collapse on scaling functions (d = 2, L = 766)

→ Understanding of dynamic critical behavior in given universality class necessary

Model

Scalar
$$\phi^4$$
 theory: $\mathscr{L}(\phi) = \frac{1}{2}(\partial^{\mu}\phi \ \partial_{\mu}\phi + \phi^2) - \frac{1}{4!}\phi^4 - J\phi$

$$\mathbb{Z}_2$$
 symmetry; broken for $J \neq 0$

Langevin Dynamics: Coupling to heat bath of temperature T

Quench linearly through CP $T(t) = T_c, J(t) = -r_J t$

Higher Cumulants

Observables: Order Parameter $M = \frac{1}{V} \sum_{x} \phi_{x}$ Susceptibility $\chi = \frac{V}{T} (\langle M^{2} \rangle - \langle M \rangle^{2})$, Skewness, Kurtosis

Kibble-Zurek Mechanism [1,2,3] & Scaling [4]

System falls out of equilibrium when rate of change in relaxation time is greater than relaxation rate

$$\dot{\xi}_t / \xi_t \gtrsim 1 / \xi_t \longrightarrow \dot{\xi}_t (t = t_{KZ}) = 1$$

At t_{KZ} , correlations freeze until equilibrium is reached again

Kibble-Zurek time and field in given quench protocol: $t_{KZ} \sim r_J^{-\nu_c z/(1+\nu_c z)}$ $J_{KZ} \equiv J(t_{KZ}) \sim r_J^{1/(1+\nu_c z)}$

Leads to scaling Ansatz of observables

for behavior under scale transformation $l \rightarrow l/s$:

$$\kappa_n(J, r_J) \propto r_J^{(n-1-1/\delta)/(1+\nu_c z)} f_{\kappa_n}(J(t)/J_{KZ})$$

References

[1] T. W. B. Kibble, J. Phys. A 9 (1976) 1387–1398.
[2] W. H. Zurek, Nature 317 (1985) 505–508.
[3] W. H. Zurek, Phys. Rept. 276 (1996) 177–221.
[4] A. Chandran et al., Phys. Rev. B 86 (6) (2012) 064304.

