

ID de Contribution: 292 Type: Poster

Wigner function thermalization — a quantum simulation of QGP based on the Schwinger Model

mardi 4 juin 2024 19:07 (1 minute)

Thermalization of the quark gluon plasma (QGP) created in relativistic heavy-ion collisions is a crucial theoretical question in understanding the onset of hydrodynamics, and in a broad sense, a key step to the exploration of thermalization in quantum systems.

Addressing this problem theoretically, in a first principle manner, requires a real-time, non-perturbative method. To this end, we carry out a fully quantum simulation on a classical hardware, of a massive Schwinger model, which well mimics QCD as it shares the important properties such as confinement and chiral symmetry breaking. We focus on the real-time evolution of the Wigner function, namely, the two-point correlation function, which approximates quark momentum distribution, etc. Starting from a non-equilibrium initial state, the real time evolution of the Wigner functions, as well as the entanglement entropy, both demonstrate that thermalization of the quantum system is approachable. In particular, relaxation to the thermalized state depends on coupling strength, in the presence of quantum fluctuations. We also study the connection of the Wigner function thermalization to the well-known Eigenstate Thermalization (ETH).

Auteurs principaux: Prof. YAN, Li (Fudan University); CHEN, Shile (Tsinghua University); SHI, Shuzhe (Tsinghua University, Beijing, China)

Orateur: CHEN, Shile (Tsinghua University)

Classification de Session: Posters

Classification de thématique: Strangeness in Astrophysics, Other topics