Exploring inelastic and elastic parton interactions and transport properties of the strongly interacting quark-gluon plasma

Ilia Grishmanovskii¹, Olga Soloveva¹, Taesoo Song², Carsten Greiner¹, and Elena Bratkovskaya^{2,1}

¹Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität ²GSI Helmholtzzentrum für Schwerionenforschung GmbH

MOTIVATION

An understanding of the properties of the sQGP by employing an effective quasiparticle model

DYNAMICAL QUASIPARTICLE MODEL (DQPM)

- Effective model for the description of non-perturbative QCD based on IQCD EoS [1]
- The QGP phase is described in terms of interacting quasiparticles, massive quarks and gluons, with Lorentzian spectral functions

 $ho_j(\omega,{f p})={4\omega\gamma_j\over \left(\omega^2-{f p}^2-M_j^2
ight)^2+4\gamma_j^2\omega^2}$

functions \rightarrow quark (gluon) propagator (2PI)

DQPM INGREDIENTS

• Masses and widths of quasiparticles depend on T and $\mu_{\rm B}$

- No approximations applied
- All interference terms included
- Emitted gluon is massive

 p_b elle ple littlitte p_2

 p_b accorded a constant p

 p_b ellevel p_2

RESULTS: CROSS SECTIONS

- Suppression of radiative cross section for small energies
- Enhancement of radiative cross section for small temperatures

RESULTS: PARTON INTERACTION RATES

• Inelastic interaction rates of thermal light quarks and gluons are strongly suppressed at all temperatures

pb llevel

 p_b ellelele $\rightarrow p_1$

-

• Accounting for inelastic processes only slightly shortens the relaxation time of thermal sQGP

RESULTS: JET TRANSPORT COEFFICIENTS

• Employing different strong couplings in thermal, jet, and radiative vertices

	Vertex					
Model	 thermal parton 	 jet parton 	emitted gluon			
DQPM	$a_{s}(T)$					
DQPM, a _s = 0.3	a _s = 0.3					
DQPM, a _s (Q ²)	a _s (T)	$a_{s}(Q^{2})$	$a_{s}(k_{t}^{2})$			

• Strong dependence on the choice of a_{s}

- Consistency with the weak-coupling limit at high temperatures
- Strong deviation from the weak-coupling limit at low temperatures

OUTLOOK	REFERENCES	FUNDING			
 Implementation of inelastic 2→3 cross sections into full transport simulation (PHSD) 	[1] W. Cassing, Eur.Phys.J.ST 168 (2009) 3-87 [2] I. Grishmanovskii et al, Phys.Rev.C 109 (2024) 2, 024911	GOETHE			
 Study the full jet evolution within transport simulations 	[3] I. Grishmanovskii et al, Phys.Rev.C 106 (2022) 1, 014903	UNIVERSITÄT	CRC-TR 211 Strong-interaction matter	Helmholtz Forschungsakademie Hessen für FAIR	
 Implementation of the LMP effect 	[4] I. GHSHIMAHOVSKII et al, al XIV.2402.04923	FRANKFURT AM MAIN	under extreme conditions		