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Introduction and motivation

•Extensive studies of QCD phase diagram. Focus on phase transition between QGP
(deconfinement, restored chiral symmetry) and hadron gas (confinement, broken chiral
symmetry). Special interest in conjectured QCD critical point;

• Stochastic dynamics of the chiral order parameter, whose fluctuations are expected to
show extraordinary behavior around criticality;

• In stochastic models, UV divergences manifest as unphysical lattice spacing (dx) de-
pendence in numerical calculations.

Improve treatment of this problem with lattice renormalization techniques.

Relaxational model (no conserved quantities)

Stochastic relaxation equation of chiral order parameter
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Ginzburg-Landau effective potential, ϵ encodes phase transition
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White thermal noise

⟨ξ(x⃗, t)⟩ = 0 and ⟨ξ(x⃗, t)ξ(x⃗′, t′)⟩ = 2ηT δ(x⃗− x⃗′)δ(t− t′)

Here, only mass renormalization is required; corrective counterterm for Veff
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The system

•Cubic lattice, sides L = 20fm, periodic
boundary conditions;

•N cells in each direction, lattice spacing
dx = dy = dz = L

N ;

•λ = 0.25;

•T = M = η = 1;

•Quantities are made dimensionless.

Observables

Volume average of φ for each noise config-
uration. Extract following observables from
distribution over all configurations:

•Mean Φ;

•Variance σ2;

•Kurtosis as κσ2.

Conditions

Bare (solid lines) and renromalized (dashed lines and
shaded areas) systems.
Equilibrium at tfin, over volume varying with radius X .
Relaxation at fixed radius X = 8, over t = 0 → tfin.
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• ϵ = −1 broken symmetry. Φ and σ2 at equilibrium
and during relaxation;

• ϵ = 0.1, close to a critical point. Φ and σ2 at equi-
librium and during relaxation;

• ϵ = 0.01, closer to criticality. κσ2 during relaxation.

Dynamical relaxation of κσ2

Closer to critical point, tfin = 60 sufficient in
bare case, tfin = 300 needed for renormalized
system.
Renormalization allows the restoration of
expected non-Gaussianity; κσ2 takes finite
non-zero values.

Φ and σ2 at equilibrium
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Chirally broken phase with 1st-order transition, tfin = 60. Renormalization cures dx-
dependence and restores expected equilibrium value of Φ.
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Close to critical point, tfin = 60. Renormal-
ization restores dx-independence.

Dynamical relaxation of Φ and σ2
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Chirally broken phase with 1st-order transition, tfin = 60 and φ0 = 1. Addition of coun-
terterm cures dx-dependence.
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Close to critical point, tfin = 60. φ0 = 0.1 for bare system, φ0 = φ(dx) in renormalized case.
Renormalization cures dx-dependence.

Summary and conclusion

•Lattice renormalization derived counterterm cures dx-dependence in Φ and σ2,
at equilibrium and during relaxation, both in chirally broken phase (ϵ = −1) and close to
critical point (ϵ = 0.1);

•The same mass counterterm restores non-Gaussian behavior of κσ2 closer to criti-
cality (ϵ = 0.01);

•Within available statistics for κσ2, robust conclusions for non-Gaussian behavior when
ϵ = 0.1 and for restoration of dx-independence when ϵ = 0.01 were not obtainable.


