RENORMALIZED CHIRAL CRITICAL DYNAMICS AND FLUCTUATIONS

Nadine Attieh¹, Nathan Touroux^{1,2,3}, Marcus Bluhm¹, Masakiyo Kitazawa^{2,3,4}, Marlene Nahrgang¹, Taklit Sami¹

¹ SUBATECH UMR 6457 (IMT Atlantique, Université de Nantes, IN2P3/CNRS), 4 rue Alfred Kastler, 44307 Nantes, France ² Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
³ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 Japan ⁴ J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, 319-1106 Japan

Introduction and motivation

• Extensive studies of **QCD phase diagram**. Focus on **phase transition** between QGP (deconfinement, restored chiral symmetry) and hadron gas (confinement, broken chiral symmetry). Special interest in conjectured **QCD critical point**;

- Stochastic dynamics of the chiral order parameter, whose fluctuations are expected to show extraordinary behavior around criticality;
- In stochastic models, UV divergences manifest as unphysical lattice spacing (dx) de**pendence** in numerical calculations.

Improve treatment of this problem with **lattice renormalization techniques**.

Φ and σ^2 at equilibrium

Relaxational model (no conserved quantities)

Stochastic relaxation equation of chiral order parameter

$$\frac{\partial^2 \varphi}{\partial t^2} - \nabla^2 \varphi + \eta \frac{\partial \varphi}{\partial t} + \frac{\partial V_{\text{eff}}}{\partial \varphi} = \xi$$

Ginzburg-Landau effective potential, ϵ encodes phase transition

$$V_{\rm eff}(\varphi) = \frac{1}{2}\epsilon\varphi^2 + \frac{1}{4}\lambda\varphi^4$$

White thermal noise

 $\langle \xi(\vec{x},t) \rangle = 0$ and $\langle \xi(\vec{x},t)\xi(\vec{x}',t') \rangle = 2\eta T \,\delta(\vec{x}-\vec{x}')\delta(t-t')$

Here, only mass renormalization is required; corrective counterterm for $V_{\rm eff}$

$$V_{\rm CT} = \left\{ -\frac{3\lambda\Sigma}{4\pi} \frac{T}{dx} + \frac{3}{8} \left(\frac{\lambda T}{\pi}\right)^2 \left[\ln\left(\frac{6}{Mdx}\right) + \zeta \right] \right\} \frac{\varphi^2}{2}$$

The system

- Cubic lattice, sides L = 20fm, periodic boundary conditions;
- N cells in each direction, lattice spacing $dx = dy = dz = \frac{L}{N};$

Observables

- Volume average of φ for each noise configuration. Extract following observables from distribution over all configurations:
- Mean Φ ;

Chirally broken phase with 1st-order transition, $t_{\rm fin} = 60$. Renormalization cures dxdependence and restores expected equilibrium value of Φ .

Close to critical point, $t_{\rm fin} = 60$. **Renormal**ization restores dx-independence.

Dynamical relaxation of Φ and σ^2

Bare (solid lines) and **renromalized** (dashed lines and shaded areas) systems.

Equilibrium at t_{fin} , over volume varying with radius X. **Relaxation** at fixed radius X = 8, over $t = 0 \rightarrow t_{\text{fin}}$.

- $\epsilon = -1$ broken symmetry. Φ and σ^2 at equilibrium and during relaxation; • $\epsilon = 0.1$, close to a critical point. Φ and σ^2 at equi
 - librium and during relaxation;
 - $\epsilon = 0.01$, closer to criticality. $\kappa \sigma^2$ during relaxation.

Chirally broken phase with 1st-order transition, $t_{\rm fin} = 60$ and $\varphi_0 = 1$. Addition of counterterm cures dx-dependence.

Close to critical point, $t_{\rm fin} = 60$. $\varphi_0 = 0.1$ for bare system, $\varphi_0 = \varphi(dx)$ in renormalized case. Renormalization cures dx-dependence.

Summary and conclusion

Dynamical relaxation of $\kappa\sigma^2$

- Closer to critical point, $t_{\text{fin}} = 60$ sufficient in bare case, $t_{\text{fin}} = 300$ needed for renormalized system.
- **Renormalization allows the restoration of expected non-Gaussianity**; $\kappa \sigma^2$ takes finite non-zero values.
- Lattice renormalization derived counterterm cures dx-dependence in Φ and σ^2 , at equilibrium and during relaxation, both in chirally broken phase ($\epsilon = -1$) and close to critical point ($\epsilon = 0.1$);
- The same mass counterterm restores non-Gaussian behavior of $\kappa\sigma^2$ closer to criticality ($\epsilon = 0.01$);
- Within available statistics for $\kappa\sigma^2$, robust conclusions for non-Gaussian behavior when $\epsilon = 0.1$ and for restoration of dx-independence when $\epsilon = 0.01$ were not obtainable.

