

ID de Contribution: 191 Type: Poster

Measurements of $K^{*0,\pm}$ mesons in Au+Au (BES-II) and Ru(Zr)+Ru(Zr) collisions at RHIC

mardi 4 juin 2024 19:53 (1 minute)

The comparison between the production of short-lived resonances (e.g., K^*) to non-resonances (e.g., K) is commonly employed to understand the role of re-scattering and regeneration processes that occur during the late stages of hadronic interactions. Additionally, the neutral $(K^{*0}\ (d\bar{s}))$ and charged $(K^{*+}\ (u\bar{s}))$ vector mesons share similar mass and isospin, but the magnetic moments of their constituent quarks differ by approximately a factor of five. This distinction makes them a unique probe for studying medium effects and particle production.

In this talk, we will present the mass, width, transverse momentum (p_T) spectra, yield (dN/dy), and $\langle p_T \rangle$ of $K^{*0,\pm}$ mesons, utilizing data from the 2^{nd} phase of the RHIC Beam Energy Scan (BES-II) program on Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 - 19.6 GeV, and isobar collisions (Ru+Ru and Zr+Zr) at $\sqrt{s_{NN}}$ = 200 GeV. The high-statistics sample of isobar collisions will enable precise and differential measurements of particles and anti-particles $(K^{*0},\overline{K^{*0}},$ and $K^{*\pm})$, separately. The results of the K^{*+}/K^{*0} ratio can be utilized to probe isospin effects. Moreover, comparing the K^{*0}/K^- ratio between Au+Au and isobar collisions can provide insights into the energy and system size dependence of hadronic interactions.

Auteurs principaux: SINGHA, Subhash (Institute of Modern Physics Chinese Academy of Sciences); SINGHA, Subhash (Institute of Modern Physics, Lanzhou)

Co-auteur: TRZECIAK, Barbara Antonina (Czech Technical University in Prague)

Orateurs: SINGHA, Subhash (Institute of Modern Physics Chinese Academy of Sciences); SINGHA, Subhash (Institute of Modern Physics, Lanzhou)

Classification de Session: Posters

Classification de thématique: Resonances and Hyper-nuclei