Flavor equilibration of the quark-gluon plasma Andrew Gordeev¹, Steffen A. Bass¹, Berndt Müller¹, Jean-François Paquet²

1. Duke University 2. Vanderbilt University

How can we observe quark chemical equilibration in the QGP?

Equilibration in Heavy Ion Collisions

Model: Partial Chemical Equilibrium

- Assume the QGP forms as fluid of thermalized gluons and zero (anti)quarks

Figure: Hannah Elfner (MADAI collaboration)

- Success of gluon saturation models suggests the initial state is gluon-dominated
- Conventional hydrodynamic models initialize QGP in **thermal** and chemical equilibrium
- Theoretical predictions for quark chemical equilibration times vary¹: the QGP likely forms out of equilibrium
- **Our goal:** study the evolution of the QGP in a scenario where (anti)quarks are produced during hydrodynamic stage
- We introduce local quark 1.0 fugacity γ_q with relaxation 0.8 time τ_{eq}^2 : 0.6 Yq $\gamma_q(\tau_p) = 1 - \exp\left(\frac{\tau_0 - \tau_p}{\tau}\right)$ 0.4 $\tau_{eq} = 0$ fm/c (equilibrium) 0.2 $\tau_{eq} = 0.1 \text{ fm/c}$

• Equation of state transitions from $N_f = 0$ to $N_f = 2 + 1$ with shifting critical

temperature $T_c(\gamma_q)$ that increases with distance from equilibrium • High T: $\frac{p}{T^4}(T, \gamma_q) = \gamma_q \frac{p_{N_f=2+1}}{T^4} \left(T \frac{T_{c,N_f=2+1}}{T_c(\gamma_q)} \right) + (1 - \gamma_q) \frac{p_{N_f=0}}{T^4} \left(T \frac{T_{c,N_f=0}}{T_c(\gamma_q)} \right)$

• Low *T*: Hadron resonance gas with hadronic fugacities: $\lambda_{meson} = 0.85 \gamma_q + 0.15$ $\lambda_{baryon} = \lambda_{meson}^{3/2}$

- Specific shear and bulk viscosities are functions of (T, γ_a)
- Particlization occurs at $T_c(\gamma_a)$ using Cooper-Frye prescription with γ_a -dependent corrections to hadron distribution functions and viscous corrections
- Implemented in: MUSIC³ (hydrodynamics), iS₃D⁴ (particlization)
- T_RENTo⁵ used to generate 2.76 TeV Pb-Pb events as initial conditions

• Can define independent γ_a

and τ_{eq} for each flavor

• SMASH⁶ used as hadronic afterburner

Future Studies

- Study independent equilibration of strange and charm quarks • Strange hadrons are particularly good
 - probes of QGP equilibration
- Model **shorter-lived** collision systems that equilibrate less
- Ultimately: Bayesian parameter estimation to **constrain equilibration** timescales alongside their effect on QGP transport properties

Results

- Higher hadronization temperature increases production of more massive and energetic hadrons
- Non-unity γ_q suppresses **production**, especially of baryons
- Flow is sensitive to:
 - Difference in pressure gradients at initialization
 - Rate of quark production during hydrodynamic evolution

1. Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005) 2. V. Vovchenko et al., Phys. Rev. C 94, 024906 (2016) 3. B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 82, 014903 (2010) 4. M. McNelis, D. Everett, and U. Heinz, Comput. Phys. Commun. 107604 (2020) 5. J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C 92, 011901 (2015) 6. J. Weil et al., Phys. Rev. C 94, 054905 (2016).

Supported by the U.S. Department of Energy under Grant Numbers DE-FG02-05ER41367 and DE-SC-0024347.