Charged-particle production in pp collisions at $\sqrt{s} = 13.6$ TeV and in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.36$ TeV with ALICE

Beomkyu Kim (Sungkyunkwan Univ.) On behalf of ALICE Collaboration

Charged-particle multiplicity density ($dN_{ch}/d\eta$)

□ Study interplay between soft and hard QCD

Nucleus-Nucleus (AA) collisions

• Direct relation to the energy density (ϵ) of QGP $\epsilon = \frac{dE_T/dy}{\tau_0 \pi R^2} \sim \frac{3}{2} \langle m_T \rangle \frac{dN_{ch}/d\eta}{\tau_0 \pi R^2} > 1 \text{GeV/fm}^3$

Proton-Nucleus (pA) collisions

Proton-Proton (pp) collisions

- Reference data for nuclear effect
- Study Multiple Parton Interactions (MPIs) in high $N_{\rm ch}$ collisions
- Discriminate beteween Final-State Radiation (FSR) in AA and Initial-State Radiation (ISR) of nuclei themselves
- Good index for system-size information
 - Continuous indicator of system-size information from pp to AA
- Good observable for detector calibrations
 - Well behaved and stable distribution following the power law as a function of collision energy

$dN_{ch}/d\eta$ in pp collisions

- \Box At LHC energy \rightarrow more contribution from hard processes
 - > Multiple parton interactions (MPI): More than one hard scattering
 - Regulation of MPIs is connected to the QGP-like effect

And additional soft processes

- ➢ ISR+FSR
- Color-connected beam remnant
- Infrared MPIs (not primary)
- Characteristics
 - $\succ p_{\rm T} \sim {\rm few~GeV}$
 - Non perturbative
 - Phenomenology
 - Modelling

$dN_{\rm ch}/d\eta$ in pp collisions

Single Negative Binomial Distribution (NBD) fit \checkmark Traditional parametrisation of particle multiplicity (*n*) $P_{\text{NBD}}(n, \langle n \rangle, k) = \frac{\Gamma(n+k)}{\Gamma(k)\Gamma(n+1)} \left[\frac{\langle n \rangle}{\langle n \rangle + k}\right]^n \times \left[\frac{k}{\langle n \rangle + k}\right]^k$

✓ Single NBD fit does not explain the data well

➢Double NBD fit

✓ Weighted sum of two NBD functions

 $P_{\text{Double NBD}} = \lambda [\alpha P_{\text{NBD}} (n, \langle n \rangle, k) + (1 - \alpha) P_{\text{NBD}} (n, \langle n \rangle, k)]$ α : soft and MPIs (not primary), $1 - \alpha$: hard scattering

✓ Describes the LHC data better → Clear MPI contribution

ALICE in RUN 3

ALICE in RUN 3

$dN_{ch}/d\eta$ in pp collisions

\Box dN_{ch}/d η distribution for INEL>0 events

- New ALICE setup works well in RUN 3
- INEL>0 events
 - ✓ Inelastic events having at least one charged particle in $|\eta| < 1$
 - ✓ Remove most diffraction events
 - Maximize model constraints by
 - minimizing diffraction uncertainty
- PYTHIA 8 describes data well

$dN_{\rm ch}/d\eta$ in pp collisions

$dN_{\rm ch}/d\eta$ in pp collisions

\Box Multiplicity-dependent $dN_{ch}/d\eta$

Multiplicity determination by signal sum of FTO-A and C

	Rapidity coverage
FTO-A	$3.5 \le \eta \le 4.9$
FT0-C	$-3.3 \le \eta \le -2.1$

 \succ Fractional cross-section ($\sigma/\sigma_{MB_{>0}}$)

- ✓ $\sigma_{\rm MB_{>0}}$: Minimum-bias events having at least one track in $|\eta| < 1$
- ✓ $\sigma_{\rm MB_{>0}}$ constituting 100%
- ✓ Closer to 0% → higher the multiplicity
 of FTO-A and FTO-C
- > $dN_{ch}/d\eta$ for the 0–1% is 7 times larger than one for the 70–100%
- Important input for other observables to study QGP-like effects

$dN_{ch}/d\eta$ in Pb–Pb collisions

Centrality determination

Centrality determined with the FTO-C

NBD Glauber fit coupled to a two component model

 $P_{\text{NBD}}(n, \langle n \rangle, k) \times [fN_{\text{part}} + (1 - f)N_{\text{coll}}]$ N_{part} : The number of participants N_{coll} : The number of binary collisions

10

$dN_{ch}/d\eta$ in Pb–Pb collisions

$\Box dN_{ch}/d\eta$ for the 0–80% and 0– 5% centralities

✓ Good agreement with the CMS preliminary results

$dN_{\rm ch}/d\eta$ in Pb–Pb collisions

$\Box 2/\langle N_{part} \rangle \langle dN_{ch}/d\eta \rangle vs \sqrt{s_{NN}}$

- $2/\langle N_{part}\rangle\langle dN_{ch}/d\eta\rangle$ for the top 5% centrality
- One at 5.36 TeV in agreement with the trend
 - ✓ 2.76 TeV ALICE result: Phys. Rev. Lett. 106, 032301
 - ✓ 5.02 TeV ALICE result: Phys. Rev. Lett. **116**, 222302
- A stronger rise w.r.t $\sqrt{s_{NN}}$ than pp
 - \checkmark $\langle dN_{\rm ch}/d\eta \rangle$ in pp $\propto s^{0.115(3)}$
 - \checkmark $\langle dN_{\rm ch}/d\eta \rangle$ in Pb—Pb $\propto s^{0.156(3)}$

$dN_{\rm ch}/d\eta$ in Pb–Pb collisions

ALI-PREL-571645

> New $\langle dN_{ch}/d\eta \rangle$ vs $\langle N_{part} \rangle$ at 5.36 TeV

- ✓ Slightly higher than one at 5.02 TeV as expected
- > $2/\langle N_{part} \rangle \langle dN_{ch}/d\eta \rangle$ decreases
 - ✓ From ~ 10 for the most central
 - ✓ To \sim 6 for the most peripheral

$dN_{ch}/d\eta$ in Pb–Pb collisions

\Box Model comparison for $dN_{ch}/d\eta$

ALI-PREL-571341

- > PYTHIA Angantyr: Extension of the PYTHIA, incorporating heavy-ion collisions
- > HYDJET: Full evolution of heavy-ion collisions (jet interaction, QGP, hadronic phase)
- > PYTHIA8 describes $dN_{ch}/d\eta$ distributions well than HYDJET

$dN_{\rm ch}/d\eta$ in Pb–Pb collisions

\Box Model comparison for $\langle dN_{ch}/d\eta \rangle$ vs $\langle N_{part} \rangle$

- IP Glasma: Focusing on initial gluon
 field configuration and the early-time
 dynamics before thermalization
- McDIPPER: Saturation based model for the initial condition, then 3+1d medium evolution performed

> IP Glasma and McDiPPER

underestimates the data slightly

> **HYDJET** overshooting much for lower $\langle N_{part} \rangle$

15

Summary

- \Box Charged-particle multiplicity density (d $N_{\rm ch}$ /d η) study
 - With a new experimental setup of ALICE
 - Validation of detector performance
- **D** pp collisions at $\sqrt{s} = 13.6$ TeV
 - New minimum-bias result confirming RUN 3 detector's performance
 - Multiplicity-dependent results enable system-size dependent study for other observables
- **D** Pb-Pb collisions at $\sqrt{s_{NN}} = 5.36$ TeV
 - Good agreement with the CMS preliminary results
 - > $2/\langle N_{part} \rangle \langle dN_{ch}/d\eta \rangle$ vs $\sqrt{s_{NN}}$ for the top 5% centrality in agreement with the previous AA power-law trend