Angular correlations of neutral to charged kaons in Pb–Pb collisions with ALICE

Anjaly Sasikumar Menon⁽¹⁾ for the ALICE Collaboration

(anjaly.sasikumar.menon@cern.ch)

⁽¹⁾ University of Houston, United States

C > 1 : Correlation

 π^+

ITS 2

ITS 1

V^{0 (}K⁰s)

4. RESULTS – II

1. MOTIVATION

- ALICE observed large dynamical correlations between the produced neutral and charged kaons in Pb–Pb collisions. The fluctuations of relative yields of kaons were measured using the robust fluctuation correlator, $v_{\rm dyn}$ [1].
- Two theoretical approaches that can describe this behavior are DCC (Disoriented Chiral Condensate) and DIC (Disoriented Isospin Condensate) [2,3].
- DCC arises from chiral symmetry restoration in the QGP, which breaks during the phase transition to form a condensate which coherently emits hadrons.
- **DIC** event-by-event fluctuations of the $\langle \bar{u}u \rangle$ vs. $\langle \bar{d}d \rangle$ condensates.

ALICE

 \rightarrow The $\Delta \eta$ projections of $K^0_s K^{\pm}$ correlation function are compared with HIJING and AMPT model predictions.

HIJING – Heavy Ion Jet INteraction Generator

AMPT – A Mult-Phase Transport model (Includes collective effects)

- **2. ANALYSIS STRATEGY**
- The correlation function is defined as the ratio of signal and background distributions.
- **Signal**: Distribution of correlated pairs of particles from the same events.
- Background: Reference distribution constructed by the eventmixing procedure using uncorrelated particle pairs that reflects single particle acceptance effects.

 \rightarrow The $\Delta \varphi$ projections of $K^0_{S}K^{\pm}$ correlation function are compared with HIJING and AMPT model predictions.

<u>____</u>1.01

Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV

- \checkmark Charged kaons (K[±]) are identified using information from both the TPC (Time Projection Chamber) and TOF (Time Of Flight) detectors.
- Neutral kaons (K⁰_s) are reconstructed based on their weak decay \checkmark topology where they decay into oppositely charged pions with a BR of 69.20%.
- \checkmark To verify the selection criteria for K_s^0 and K^{\pm} , closure test is performed using the HIJING Monte-Carlo model at both the generated and reconstructed (detector transport) levels.
- \checkmark The final correlation functions are corrected for PID+reconstruction efficiencies and secondary contamination.

ALICE Preliminary

Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

ALICE Preliminary

Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV

- The $K^0_S K^{\pm}(\Delta \varphi, \Delta \eta)$ angular correlation functions using Run2 Pb–Pb data (collected in 2018) are compared with the AMPT and HIJING model predictions.
- The angular correlations do not exhibit anomalous behavior in the production of neutral and charged kaons, an observation in contrast to the integrated balance function (ν_{dvn}) measurement.
- AMPT model provides a better description compared to the HIJING.
- The anisotropic flow in $K^0_S K^{\pm}$ is comparable to that of K⁺K⁻.
- $\Delta \eta$ correlations of K⁺K⁻ shows dominant contributions from Phi(1020) meson resonance. Jet and resonance contributions in both K⁰_SK[±] and K⁺K⁻ correlations require further investigation.

REFERENCES

[1] S. Acharya et al. (ALICE), Phys. Lett. B 832, 137242 (2022) [2] J. I. Kapusta, S. Pratt and M. Singh, Phys. Rev. C 107, no.1, 014913 (2023) [3] J. I. Kapusta, S. Pratt and M. Singh, arXiv:2306.13280