

Chasing the onset of QCD thermalisation with ALICE

Mario Ciacco (PoliTO, INFN), for the ALICE Collaboration SQM2024 – Strasbourg, 3 - 7 June 2024

Hadronisation and strangeness conservation

- String fragmentation [1]
 - Short-range rapidity correlations
 - Mostly correlation of unlike-sign charges
- Canonical statistical hadronisation (CSM) [2]
 - Thermalised hadronic system with long-range rapidity correlations
 - Symmetry of like- and unlike-sign correlations

Event-by-event observables

• Cumulants κ_1 , κ_2 , and κ_{11}

$$\kappa_1 = \langle n \rangle$$
 \rightarrow average $\kappa_{11}(m,n) = \langle (m-\langle m \rangle)(n-\langle n \rangle) \rangle$ $\kappa_2 = \langle (n-\langle n \rangle)^2 \rangle$ \rightarrow (co)variance

• Correlation ρ

$$\rho(m,n) = \frac{\kappa_{11}(m,n)}{\sqrt{\kappa_2(m)\kappa_2(n)}}$$

- Net-particle number Δn
 - At the LHC, μ_B ~ 0 [3] \rightarrow matter balances antimatter \rightarrow cancellation of the effect of volume fluctuations [4]

Results

- Second-to-first order cumulant ratio of net-Ξ
 - Sensitive to unlike-sign strangeness correlation
 - Smooth evolution across multiplicity
 - Indication of longer-range rapidity correlations → ~3 units of rapidity compared to ~1 unit of rapidity for string fragmentation

- Net-E-net-kaon correlation
 - Sensitive to like- and unlike-sign correlations
 - Results are consistent
 with CSM, V_c~ 3 dV/dy
 - Indication of a significant ss correlation
 - Pythia 8 + Rope
 hadronisation
 reproduces yields but
 fails to describe
 fluctuations

Candidate selection

- Charged kaons
 - dE/dx with Time Projection
 Chamber
 - Velocity with Time-of-Flight detector

- Charged ≡ baryons
 - Cascade decay

ALI-PERF-556599

 $\Xi^- \rightarrow \Lambda (\rightarrow p + \pi^-) + \pi^- + cc$

Selection based on Boosted
 Decision Trees [5]

References