Chasing the onset of QCD thermalisation with ALICE

Hadronisation and strangeness conservation

- String fragmentation [1]
- Short-range rapidity correlations
- Mostly correlation of unlike-sign charges
- Canonical statistical hadronisation (CSM) [2] - Thermalised hadronic system with long-range rapidity correlations
- Symmetry of like- and unlike-sign correlations

Event-by-event observables

- Cumulants κ_{1}, κ_{2}, and κ_{11}
$\kappa_{1}=\langle n\rangle \quad \rightarrow$ average
$\kappa_{11}(m, n)=\langle(m-\langle m\rangle)(n-\langle n\rangle)\rangle$
$\kappa_{2}=\left\langle(n-\langle n\rangle)^{2}\right\rangle \quad \rightarrow($ co $)$ variance
- Correlation ρ

$$
\rho(m, n)=\frac{\kappa_{11}(m, n)}{\sqrt{\kappa_{2}(m) \kappa_{2}(n)}}
$$

- Net-particle number Δn
- At the LHC, $\mu_{\mathrm{B}} \sim 0[3] \rightarrow$ matter balances antimatter \rightarrow cancellation of the effect of volume fluctuations [4]

Results

- Second-to-first order cumulant ratio of net- Ξ
- Sensitive to unlike-sign strangeness correlation
- Smooth evolution across multiplicity
- Indication of longer-range rapidity correlations $\rightarrow \sim 3$ units of rapidity compared to ~ 1 unit of rapidity for string fragmentation

- Net-E-net-kaon correlation
- Sensitive to like- and unlike-sign correlations
Results are consistent with CSM, $V \sim 3 \mathrm{dV} / \mathrm{d} y$
- Indication of a significant ss correlation
Pythia 8 + Rope hadronisation reproduces yields but fails to describe fluctuations

Candidate selection

- Charged kaons
- dE/dx with Time Projection

Chamber

- Velocity with Time-of-Flight detector

- Charged Ξ baryons
- Cascade decay

$$
\Xi^{-} \rightarrow \Lambda\left(\rightarrow \mathrm{p}+\pi^{-}\right)+\pi^{-}+\mathrm{cc}
$$

- Selection based on Boosted Decision Trees [5]

