Finite density QCD equation of state: critical point and lattice-based T'-expansion (Ising-TExS)

Micheal Kahangirwe¹, Stefan A. Bass², Elena Bratkovskaya³, Johannes Jahan¹, Pierre Moreau², Paolo Parotto^{4,5}, Damien Price¹, Claudia Ratti¹, Olga Soloveva³ and Mikhail Stephanov⁶.

¹University of Houston, ²Duke University, ³Goethe-Universität, ⁴Pennsylvania State University, ⁵Università di Torino and INFN Torino, ⁶University of Illinois at Chicago

Motivation

The available Equation of State (EoS) with a critical point has limited coverage in baryon chemical potential μ_B due to the truncation of the Taylor expansion. 1

Goal: To build an Equation of State with a critical point from a 3D Ising model that captures a large part of the phase diagram and matches lattice QCD results

at low chemical potential μ_R .

Tools

T'-expansion scheme [2]

expansion, hindering critical point studies [1]

3D-Ising Model

T'- Expansion Scheme

As a solution, the Wuppertal-Budapest lattice collaboration [2] developed a T'- expansion scheme that exhibits smooth behavior at high μ_B and copes well with the QCD transition temperature.

$$T \frac{\chi_1^B(T, \mu_B)}{\mu_B} = \chi_2^B(T', 0)$$
$$T'(T, \mu_B) = T \left[1 + \kappa_2^{BB}(T) \left(\frac{\mu_B}{T}\right)^2 + \kappa_4^{BB}(T) \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^6 \right]$$

From the T'-expansion scheme, as long as $T\chi_1^B/\mu_B$ is smooth, then finite density physics, such as the critical point can be encoded in T'.

Mapping 3D-Ising to QCD If the critical point in QCD exists, then it must be in the 3D-Ising model universality class. [5] $\overline{T'_{T}}$ M > 0Crossove First Order α'_{12} M < 0 $\frac{\mu_B^2 - \mu_{BC}^2}{2} = w'(-r\rho' - h\cos\alpha'_{12})$ Ferromagnetic Paramagnetic $2\mu_{BC}$ T' expansion coordinates **3D Ising coordinates** $\alpha_{12} = \alpha_1 - \alpha_2$ $T'_{T} = (\partial T' / \partial T)_{\mu}$ at the critical point $T' = T \left[1 + \left(\frac{\mu_B}{T}\right)^2 \kappa_2^{BB}(T) + \mathcal{O}\left(\frac{\mu_B}{T}\right)^4 \right]$ T_0 - Transition temperature at $\mu_B = 0$ (T_C, μ_{BC}) $\mu_{BC}, T_C, w', \rho', \alpha'_{12}$ - Free parameters μ_B **QCD** coordinates

Merging 3D-Ising with T'-Expansion

$$\frac{n_B(T,\mu_B)}{T^3} = \chi_1^B(T,\mu_B) = \left(\frac{\mu_B}{T}\right) \chi_{2,lat}^B(T',0)$$

We introduce the critical point in T' by separating into the critical part T_{crit} and the non-critical parts [4,5]

Results

We check that we match lattice QCD results at $\mu_B = 0$, and our EoS with a critical point is within the error band of extrapolated lattice QCD results for certain parameter choices. [4,5]

Summary

Disclaimer! : We don't predict the location of the critical point

We provide an **enhanced coverage** for family of EoS with a 3D Ising critical point up to $\mu_B = 700$ MeV and matching

lattice at low μ_B with adjustable parameters. [4,5]

References

[1] Parotto, P. *et al.*, **Phys.Rev.C** 101 034901 (2020) [2] Borsányi, S et al., Phys.Rev.L 108(1), 101.034901 (2021)

[3] Pradeep, M. S. & Stephanov, M., Phys.Rev.D 100(5), 056003 (2019)

[4] The code for this work is found at: DOI=10.5281/zenodo.10652327

[5] Kahangirwe M., Johannes J. *et al.*, **Phys.Rev.D** 109 094046(2024)

Acknowledgements

This material is based upon work supported by the National Science Foundation under grants No.PHY-2208724, PHY-1654219 and PHY-2116686, within the framework of the MUSES collaboration, under grant number No.OAC-2103680 and by the National Aeronautics and Space Agency(NASA) under Award Number 80NSSC24K0767. This material is also based upon work supported by the U.S. Department of Energy, Office of Nuclear 11 Physics, under Awards Number DE-SC0022023, DE-FG02-05ER41367 and DE-FG0201ER41195. O.S. and E.B. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the grant CRC-TR 211 'Strong-interaction matter under extreme conditions' - Project number 315477589 - TRR 211. This work is supported by the European Union's Horizon 2020 research and innovation program under grant agreement No 824093 (STRONG-2020)

