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Phase diagram

At  Quantum chromodynamics (QCD) 
phase diagram is well established. 

μB = 0

At finite   a critical point is expected but has 
not yet been observed.
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Taylor Expansion
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For  , thermodynamics observables have 
unphysical oscillations due to limitations of truncated Taylor 
expansion, hindering critical point studies [1]

μB > 450 MeV

Baryon density

μBC = 350 MeV,

From the T’-expansion scheme, as long as   is smooth,  
then finite density physics, such as the critical point can be 
encoded in  .
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T’- Expansion Scheme
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As a solution, the Wuppertal-Budapest lattice collaboration  [2] 
developed a - expansion scheme that exhibits smooth behavior 

at high  and copes  well with the QCD transition temperature.
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Mapping 3D-Ising to QCD
If the critical point in QCD exists, then it must be in the 3D-Ising model universality  
class. [5]

Results

We check that we match lattice QCD  results at , and our 
EoS with a critical point is within the error band of extrapolated 
lattice QCD results for certain parameter choices. [4,5]

μB = 0
μBC = 350 MeV, TC = 140 MeV α12 = 900, w = 2, ρ = 2

Thermodynamics 

Merging 3D-Ising with T’-Expansion
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We introduce the critical point in   by separating into  the critical part   and 
the non-critical parts  [4,5]
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Transition line: Choosing  fixes  and   [3]μBC TC α1

Physical quark masses:   α12 = α1

Stability and causality:   fix  and w ρ

Known constraints on the EoS

Summary
Disclaimer!  :  We don’t predict the location of the critical point 

We provide an enhanced coverage for family of EoS with a 
3D Ising critical point up to and matching  

lattice at low  with adjustable parameters. [4,5]

μB = 700 MeV
μB

μBC = 600 MeV, TC = 94 MeV α12 = α1 = 140, w = 15, ρ = 0.3

Lattice QCD: disfavors μBC < 300 MeV
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Motivation 

Goal:  To build an Equation of State  with 
a critical point from a 3D Ising model that 
captures a large part of the phase 
diagram and matches lattice QCD results 
at low chemical potential .μB

Tools
T’-expansion scheme [2]

3D-Ising Model

The available Equation of State (EoS) 
with a critical point has limited  coverage  
in baryon chemical potential  due to 
the truncation  of the Taylor expansion. 
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