New insights into strange-quark hadronization measuring multiple (multi-)strange hadron production in small collision systems with ALICE

Strangeness Enhancement: [1,2]

- S / π increases as a function of multiplicity compatible across $\sqrt{ } \mathrm{s}$ and collision systems
- Enhancement proportional to the strangeness content in the hadron
\rightarrow More insightful information on the production of (multi-)strange particles: strange particle multiplicity distribution $\mathrm{P}\left(n_{\mathrm{s}}\right)$
- new test bench for production mechanisms, probing events with a large imbalance between strange and non-strange content

ANALYSIS TECHNIQUE

Analysis based on counting the number of strange particles event-by-event in pp collisions at $\sqrt{ } \mathrm{s}=5.02 \mathrm{TeV}$

- Each candidate weighted by $P($ sig $)$ or $P(\mathrm{bkg})$ estimated by 1 D invariant mass fit in transverse momentum $\left(p_{T}\right)$ /multiplicity bins
- Weights associated to each of the N candidates in the event combined to obtain $\mathrm{P}($ all-sig $), \ldots, \mathrm{P}($ all -bkg$) \rightarrow$ For each event: full probability spectrum spanning from o to N
- Correction for detector response (MC production featuring realistic p_{T} distribution for the particles under study) \rightarrow Bayesian unfolding procedure applied

- Probability to produce n particles of a given species per event
- Unique opportunity to test the connection between charged and strange particle multiplicity production all the way to extreme situations (e.g. $7 \mathrm{~K}_{\mathrm{S}}^{\mathrm{o}}$ at low average charged-particle multiplicity,
$0 \mathrm{~K}_{\mathrm{s}}^{0}$ at high average charged-particle multiplicity)
NOTE: in each VoM bin the charged-particle multiplicity can fluctuate and $\left.<\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \eta\right\rangle$ can significantly change for events with small/large n_{S}

