

New insights into strange-quark hadronization measuring multiple (multi-)strange hadron production in small collision systems with ALICE

Sara Pucillo on behalf of the ALICE Collaboration

University & INFN Torino (sara.pucillo@cern.ch)

PHYSICS MOTIVATION

Strangeness Enhancement: [1,2]

- S/π increases as a function of multiplicity compatible across \sqrt{s} and collision systems
- Enhancement proportional to the strangeness content in the hadron
- \rightarrow More insightful information on the production of (multi-)strange particles: strange particle multiplicity distribution $P(n_s)$
 - new test bench for production mechanisms, probing events with a large imbalance between strange and non-strange content

THE ALICE DETECTOR IN RUN 2

Time Projection Chamber (TPC) Gaseous detector tracking, PID (dE/dx)

Inner Tracking System (ITS) 6 layers of silicon detectors triggering, tracking, vertexing, PID

V0 detectors (V0A, V0C) Forward-rapidity arrays of scintillators triggering, charged-particle multiplicity estimation (VOM multiplicity $\propto \langle dN_{ch}/d\eta \rangle$)

MULTIPLE STRANGE HADRON PRODUCTION YIELDS

From the measurement of $P(n_s)$ it is possible to calculate the average production yield of 1, 2, $\frac{1}{3}$, ... particles/event:

ALI-PUB-49857

ANALYSIS TECHNIQUE

Analysis based on counting the number of strange particles event-by-event in pp collisions at $\sqrt{s} = 5.02$ TeV

- Each candidate **weighted by** *P*(**sig**) or *P*(bkg) estimated by **1D** invariant mass fit in transverse momentum $(p_{T})/multiplicity$ bins
- Weights associated to each of the N candidates in the event combined to obtain P(all-sig), ..., P(all-bkg) \rightarrow For each event: full probability spectrum spanning from 0 to N
- Correction for detector response (MC production featuring realistic p_{T} distribution for the particles under study) \rightarrow **Bayesian unfolding** procedure applied

 $< Y_{k-part} > = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} P(n)$

- The increase with multiplicity of the probability for multiple strange hadrons is more than linear
- NOTE: very good agreement between $\langle Y_{1-part} \rangle$ and previous results ([1,2])
- No difference between Pythia 8 Monash [3] and Ropes [4] for K_{s}^{0} : Pythia 8 QCD-CR Ropes tends to increase baryons

YIELD RATIOS WITH \triangle S = 0

<u>Relative probability of hadronization of a specific number of s-quarks</u>

- When the strangeness remains constant, the likelihood that the final state contains a baryon and not a meson rises with multiplicity
- Decreasing the charged-particle
- By fixing the number of involved s-quarks (e.g. 2 or 4 respectively as red and magenta points), the likelihood that the final state contains a multi-strange baryon and not a meson decreases with multiplicity

- Probability to produce *n* particles of a given species per event
- Unique opportunity to test the connection between charged and strange particle multiplicity production all the way to extreme situations (e.g. 7 K^o_s at low average charged-particle multiplicity, 0 K^o_s at high average charged-particle multiplicity)

NOTE: in each VoM bin the charged-particle multiplicity can fluctuate and $\langle dN_{ch}/d\eta \rangle$ can significantly change for events with small/large n_s

multiplicity means depleting the number of light quarks, while keeping the number of *s* quarks fixed in the event \rightarrow at lower multiplicities, it becomes progressively less probable to observe baryons compared to mesons

- High multiplicity: it is simpler to pair *s*-quarks with a light quark, which are plentiful
- Low multiplicity: the surplus of *s*-quarks increases the probability of Ξ formation

All the trends are well reproduced by Pythia 8 QCD-CR Ropes

REFERENCES

[1] ALICE, Eur.Phys.J.C 80 (2020) 2, 167 [2] ALICE, Nature Phys. 13 (2017) 535-539 [3] C.Bierlich, G.Gustafson, L.Lonnblad, A. Tarasov, JHEP 03, no 148 (2015) [4] C.Bierlich, EPJ Web Conf. 171 (2018) 14003

Ratios between the average production yield of m multi-strange baryons and n K⁰_S vs multiplicity, for which Δ S moves from 2 to 5, are under

OUTLOOK

preparation: strangeness enhancement at its extremes!