

Resonance production in and out of jets in pp collisions at 13.6 TeV with ALICE

Jimun Lee¹ for the ALICE Collaboration

¹Sejong University

Introduction

• What is a jet?

- ✓ A collimated bunch of hadrons originating from hard-scattered partons
- ✓ Most jet constituents are π , K, p
- What is jet hadrochemistry?
 - ✓ Hadrochemistry : The study about the composition of hadrons
 - **Jet hadrochemistry** : The hadrochemistry of the jet constituents \checkmark

- v_2 in high multiplicity jets?
 - CMS showcased results of long-range correlations in high-multiplicity jets in pp collisions \rightarrow Significant v_2 in $N_{ch} > 80$
 - Could a deconfined QCD-medium be formed inside the jet itself? \checkmark

$$\Delta R = \sqrt{(\varphi_{\text{jet}} - \varphi_{\phi,\text{K}^*})^2 + (\eta_{\text{jet}} - \eta_{\phi})^2}$$

Results

• Invariant mass plots and fits of ϕ

- Elliptic flow v_2 \bullet
 - Asymmetry in the azimuthal distribution
 - \succ Traditional evidence for the presence of a quark-gluon plasma

S. Weyhmiller, QM 2023 poster P. Gardener, QM 2023 talk

Analysis Motivation

- Hadronic scattering as a probe of QGP existence
 - K^{*0} sometimes decay inside the QGP
 - Interference crash
 - ϕ lifetime is longer than K^{*0} Decay outside the QGP

• Main Hypothesis

1/1/

Invariant mass plots and fits of K^{*0}

Min. bias M_{inv} distributions

- If high-multiplicity jets create a QCD-medium
 - \succ Rescattering of K^{*0} daughters inside this jet cone
 - $\rightarrow \phi$ is largely unmodified by the QCD medium
- If a QGP is not created, K^{*0} production might be inherently modified due to strangeness enhancement, but not its decay constituents

Ratio of ϕ and K^{*0} in and out of high-multiplicity jets will shed light on the possible production of a hot and dense QCD medium within these jets

Summary and Outlook

- This has been a first look at raw-level ϕ and K^{*0} production in jets at 13.6 TeV utilizing LHC Run3 data measured with ALICE
- Ongoing analysis will lead to fully corrected spectra for both particle species
- Once the fully corrected min. bias and in-jets results are finalized, this ● analysis will expand into measuring multiplicity-differential results

