Implication of Quarkyonic duality to the hyperon puzzle

References: [1] <u>Y. Fujimoto</u>, T. Kojo, L. McLerran, PRL132 (2024) [2306.04304] [2] Y. Fujimoto, T. Kojo, L. McLerran, in preparation

4 June, 2024 - Strangeness in Quark Matter 2024, Strasbourg

Yuki Fujimoto (University of Washington)

INSTITUTE for NUCLEAR THEORY

Hyperon puzzle

Hyperons (Y) lower the energy density at a given baryon density

Yuki Fujimoto (INT, U Washington)

Strangeness in neutron stars

Confinement at high baryon densities

Collins & Perry (1974): Naive picture of deconfinement at high density

In weak-coupling regime, quarks liberate

This is led by screening of the confinement potential

 μ_R **L00000**

Confinement at high baryon densities

McLerran & Pisarski (2007): Quarkyonic duality

Large- N_c QCD implies...

Dense QCD matter can be described either as

- (Weakly-coupled) Quarks

Yuki Fujimoto (INT, U Washington)

$$\lambda_{'t \; Hooft} \mu^2 / N_c$$

- Confined baryons (because confining interaction is less screened)

\rightarrow implies duality between <u>quark</u> and confined bar<u>yonic</u> matter Quark yonic

Quarkyonic "shell" model

McLerran & Pisarski (2007):

To resolve the duality "paradox", the following picture of Fermi shell of baryons is proposed:

Fermi sea: dominated by interaction that is less sensitive to IR \rightarrow quarks

Fermi shell: interaction sensitive to IR d.o.f. \rightarrow baryons, mesons, glues...

Quarkyonic model for neutron stars

quarks

McLerran & Pisarski (2007):

To resolve the duality "paradox", the following picture of Fermi shell of baryons is proposed:

Fermi sea: dominated by interaction Fermi shell of that is less sensitive to IR barvons Δ_{B} \rightarrow quarks *k*_{FQ}

Fermi shell: interaction sensitive to IR d.o.f. \rightarrow baryons, mesons, glues...

Yuki Fujimoto (INT, U Washington)

McLerran, Reddy (2018):

Quarkyonic model applied to NS EoS:

(the only robust feature confirmed in NS EoS)

Quarkyonic model for neutron stars

quarks

McLerran & Pisarski (2007):

To resolve the duality "paradox", the following picture of Fermi shell of baryons is proposed:

Fermi sea: dominated by interaction Fermi shell of that is less sensitive to IR barvons Δ_{B} \rightarrow quarks $k_{\rm FQ}$

Fermi shell: interaction sensitive to IR d.o.f. \rightarrow baryons, mesons, glues...

Yuki Fujimoto (INT, U Washington)

McLerran, Reddy (2018):

Quarkyonic model applied to NS EoS:

Duality in Fermi gas model Kojo (2021); Fujimoto, Kojo, McLerran (2023)

Implement duality in Fermi gas model (= simultaneous description in terms of baryons & quarks)

Fermi gas model w/ an explicit duality: $\varepsilon = \int_{k} E_{\mathrm{B}}(k) f_{\mathrm{B}}(k) = \int_{k} E_{\mathrm{Q}}(q) f_{\mathrm{Q}}(q)$ $n_{\rm B} = \int_{k} f_{\rm B}(k) = \int_{a} f_{\rm Q}(q)$

Modeling of confinement: $f_{\mathbf{Q}}(q) = \int_{k} \varphi \left(q - \frac{k}{N_{c}} \right) f_{\mathbf{B}}(k)$

> Ideal dual Quarkyonic model (IdylliQ model) \rightarrow Find a solution for $f_{\rm B}$ and $f_{\rm O}$ with minimum ε at a given n_B

Yuki Fujimoto (INT, U Washington)

 $0 \le f_{\mathrm{B},\mathrm{Q}} \le 1$: Pauli exclusion $E_{\rm B}(k) = \sqrt{k^2 + M_N^2}$: ideal baryon dispersion relation $\varphi(q)$

 $N_{\rm c}$

Solution of IdylliQ model Kojo (2021); Fujimoto, Kojo, McLerran (2023)

At low density...

Solution of IdylliQ model Fujimoto, Kojo, McLerran (2023)

At sufficiently high density...

At sufficiently high density...

McLerran-Reddy model of the NS based on the McLerran-Pisarski picture

Conventional picture:

Including hyperons in IdylliQ model Fujimoto, Kojo, McLerran, in preparation (2024)

Due to the saturation of d-quark states, softening in the EoS is mild

Yuki Fujimoto (INT, U Washington)

- weakly-coupled quarks
- Saturation of quark momentum distribution
 - \rightarrow under-occupied states in baryonic momentum distribution (modification from Fermi-Dirac distribution)
- Implication to hyperon puzzle: Because of the saturation in d-quark states, 1) The threshold of hyperons shifted to a higher μ_R 2) The softening in the EoS is milder

- Quarkyonic: reinterpretation as a duality between confined baryons and

Yuki Fujimoto (INT, U Washington)

Yuki Fujimoto (INT, U Washington)

Supplemental materials

Underoccupied $f_{\rm B}$ and occupied $f_{\rm O}$

Baryon number in the bulk "quark" region in the quark language:

$$n_{\rm B} = \int_0^{k_{\rm FQ}} \frac{d^3 q}{(2\pi)^3} f_{\rm Q}(q)$$

In the baryon language:

$$n_{\rm B} = \int_0^{k_{\rm FB}} \frac{d^3 k}{(2\pi)^3} f_{\rm B}(k) \sim k_{\rm FB}^3 f_{\rm B} \sim N_{\rm c}^3 k_{\rm FQ}^3 f_{\rm B}$$

where the Fermi momenta are related as $k_{\rm FB} \sim N_{\rm c} k_{\rm FO}$.

Because $f_Q \le 1$, $f_B \sim 1/N_c^3$... composite baryon states are

Yuki Fujimoto (INT, U Washington)

 $(t) \sim k_{\rm FO}^3 f_{\rm Q}$

underoccupied

Rapid stiffening in the EoS

$$v_s^2 = \frac{n_{\rm B}}{\mu_{\rm B} dn_{\rm B} / d\mu_{\rm B}} \to \cdot$$

If baryons have underoccupied state, the change in density is small while the change in Fermi energy ($\sim k_F$) is large

Yuki Fujimoto (INT, U Washington)

- <u>Fujimoto</u>,Kojo,McLerran (2023)
- A partial occupation of available baryon phase space leads to large sound speed:

$$\frac{\delta\mu_{\rm B}}{\mu_{\rm B}} \sim v_s^2 \frac{\delta n_{\rm B}}{n_{\rm B}}$$

 \rightarrow Favor the crossover from nucleons to quarks

Singularity arises due to the sharpness of the Fermi surface. Our theory is completely ideal. Interaction needs to be included.

cf. Short range correlation \rightarrow smearing the Fermi surface

Yuki Fujimoto (INT, U Washington)

Speed of sound

