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QGP Formation in Small Systems?

Signatures of QGP formation in 
high multiplicity pp, p / d / 3He + A 

Weller et al., PLB 774 (2017) 351-356

ALICE, PLB 758 
(2016) 389-401

Elliptic flow

Strangeness 
enhancement

Quarkonium suppression

ALICE, JHEP 06 (2016) 050
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Nuclear Modification Factor
Qualitative success of pQCD energy loss 

models in large systems
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Nuclear Modification Factor
Qualitative success of pQCD energy loss 

models in large systems

If QGP forms in small 
systems, then we should also 

see suppression?
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Nuclear Modification in Small Systems

Small system suppression 
pattern not as clear

No suppression!

Glauber
ATLAS, JHEP 07 (2023) 074
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Nuclear Modification in Small Systems

Small system suppression 
pattern not as clear

Suppression 
~0.75!

No suppression!

Glauber

Direct γ 

PHENIX, arXiv:2303.12899 (2023)ATLAS, JHEP 07 (2023) 074
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Nuclear Modification in Small Systems

Small system suppression 
pattern not as clear

Suppression 
~0.75!

No suppression!
● Apparent tension 

between RHIC 
and LHC 
suppression 
results?

● RpA is difficult to 
measure due to 
centrality biasGlauber

Direct γ 

PHENIX, arXiv:2303.12899 (2023)ATLAS, JHEP 07 (2023) 074
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Nuclear Modification in Small Systems

Small system suppression 
pattern not as clear

Suppression 
~0.75!

No suppression!
● Apparent tension 

between RHIC 
and LHC 
suppression 
results?

● RpA is difficult to 
measure due to 
centrality bias

 → Theoretical input needed

Glauber

Direct γ 

PHENIX, arXiv:2303.12899 (2023)ATLAS, JHEP 07 (2023) 074
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Energy Loss Models in Small Systems
Elastic
E-loss

Radiative
E-loss

Collision
Geometry

Bricks 
of (L, T)

Total
E-Loss 

RAA

IP-Glasma 
+ Bjorken 
expansion

HTL, Braaten + Thoma

DGLV, 1st order in 
opacity

Schenke et al., PRC 
102 (2020) 044905

Braaten and Thoma, 
PRD 44 (1991) R2625

Djordjevic and Gyulassy, Nucl. 
Phys. A 733 (2004) 265-298
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Central limit 
theorem

Neglected 
terms ~ e− μ L 

Prethermalization 
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difficult too!

Schenke et al., PRC 
102 (2020) 044905

Braaten and Thoma, 
PRD 44 (1991) R2625

Djordjevic and Gyulassy, Nucl. 
Phys. A 733 (2004) 265-298



11

Energy Loss Models in Small Systems
Elastic
E-loss

Radiative
E-loss

Collision
Geometry

Bricks 
of (L, T)

Total
E-Loss 

RAA

IP-Glasma 
+ Bjorken 
expansion

HTL, Braaten + Thoma

DGLV, 1st order in 
opacity

Central limit 
theorem

Neglected 
terms ~ e− μ L 

Prethermalization 
E-loss is uncertain

Theory RpA is 
difficult too!

Schenke et al., PRC 
102 (2020) 044905

Braaten and Thoma, 
PRD 44 (1991) R2625

Djordjevic and Gyulassy, Nucl. 
Phys. A 733 (2004) 265-298



12

What do Small QGP’s Look Like?

● Small system ⟨L  ~ 1 fm⟩  
comparable to peripheral AA
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What do Small QGP’s Look Like?

● Small systems have L/λ  1∼
➔ Central limit theorem 

inapplicable (elastic)
➔ Multiple soft scatter 

approaches inapplicable

● Small system ⟨L  ~ 1 fm⟩  
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What do Small QGP’s Look Like?

● Small systems have L/λ  1∼
➔ Central limit theorem 

inapplicable (elastic)
➔ Multiple soft scatter 

approaches inapplicable
● Large systems have L/λ  5∼

➔ Central limit theorem still 
dubious?

● Small system ⟨L  ~ 1 fm⟩  
comparable to peripheral AA
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Energy Loss Models in Small Systems
Elastic
E-loss

Radiative
E-loss

Collision
Geometry

Bricks 
of (L, T)

Total
E-Loss RAA

IP-Glasma 
+ Bjorken 
expansion

HTL, Braaten + 
Thoma

DGLV, 1st order in 
opacity

Central limit 
theorem

Neglected 
terms ~ e− μ L 

Prethermalization 
E-loss uncertain
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Short pathlength (SPL) Corr. to DGLV

DGLV 1st order 
in opacity 

SPL corr.
Kolbe & Horowitz, PRC 
100 (2019) 024913

Djordjevic and Gyulassy, Nucl. 
Phys. A 733 (2004) 265-298
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Short pathlength (SPL) Corr. to DGLV

Suppressed 
for large L

DGLV 1st order 
in opacity 

SPL corr.
Kolbe & Horowitz, PRC 
100 (2019) 024913

Djordjevic and Gyulassy, Nucl. 
Phys. A 733 (2004) 265-298
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Short pathlength (SPL) Corr. to DGLV

Suppressed 
for large L

Breaking of colour triviality 
 → we’ll see this can lead to excessively large corr. for gluons!

DGLV 1st order 
in opacity 

SPL corr.
Kolbe & Horowitz, PRC 
100 (2019) 024913

Djordjevic and Gyulassy, Nucl. 
Phys. A 733 (2004) 265-298
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Numerics of the Short Pathlength Corr.
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Numerics of the Short Pathlength Corr.

We see the SPL correction:



21

Numerics of the Short Pathlength Corr.

We see the SPL correction:
● Decreases as a function of L
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Numerics of the Short Pathlength Corr.

We see the SPL correction:
● Decreases as a function of L
● much larger for gluons cf quarks
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Numerics of the Short Pathlength Corr.

We see the SPL correction:
● Decreases as a function of L
● much larger for gluons cf quarks
● Can lead to negative energy loss
● Grows as a function of 
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Energy Loss Models in Small Systems
Elastic
E-loss

Radiative
E-loss

Collision
Geometry

Bricks 
of (L, T)

Total
E-Loss RAA

IP-Glasma 
+ Bjorken 
expansion

HTL, Braaten + 
Thoma

DGLV, 1st order in 
opacity

Central limit 
theorem

Neglected 
terms ~ e− μ L 

Prethermalization 
E-loss uncertain
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Central Limit Theorem in Elastic E-loss

How important is central limit theorem in the elastic energy loss?

We compare:

2) HTL result with Gaussian 
distribution (Gaussian HTL)

1) HTL result with Poisson 
distribution (Poisson HTL)

(Fluctuation 
Dissipation Thrm)
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Elastic Energy Loss

Uncertainty in the elastic energy loss 
relating to applying HTL vs Gaussian 
propagators

We compare two extremes to 
capture this uncertainty:

1.  Gaussian BT – combination of 
vacuum and HTL propagators 
Braaten and Thoma, Phys. Rev. D 44 (1991) 
R2625

2.Poisson HTL – HTL only 
propagators Wicks, PhD thesis (2008) Generically in HIC radiative E-loss > elastic E-loss
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Heavy Flavour Suppression in PbPb
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Heavy Flavour Suppression in PbPb

● Low pt is sensitive to choice 
of elastic energy loss (HTL vs 
vacuum propagators)
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Heavy Flavour Suppression in PbPb

● Low pt is sensitive to choice 
of elastic energy loss (HTL vs 
vacuum propagators)

● Gaussian approximation ~ 
full Poisson result for all pt 
(blue vs red)
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Heavy Flavour Suppression in PbPb

● Low pt is sensitive to choice 
of elastic energy loss (HTL vs 
vacuum propagators)

● Gaussian approximation ~ 
full Poisson result for all pt 
(blue vs red)

● Short pathlength correction to 
radiative E-loss is small
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Light Flavour Suppression in PbPb

● Gaussian ~ Poisson for all pt

● Low-mid pt results sensitive to 
choice of elastic E-loss kernel
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Light Flavour Suppression in PbPb

● Gaussian ~ Poisson for all pt

● Low-mid pt results sensitive to 
choice of elastic E-loss kernel

● SPL corr. has a large effect,  
which may contribute to fast 
pion RAA rise in pT  
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Light Flavour Suppression in PbPb

● Gaussian ~ Poisson for all pt

● Low-mid pt results sensitive to 
choice of elastic E-loss kernel

● SPL corr. has a large effect,  
which may contribute to fast 
pion RAA rise in pT  

● Turnover can be understood as 
crossover from gluons to light 
quark dominated spectra
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Light Flavour Suppression in AuAu

● More sensitive to HTL vs BT elastic 
energy loss than PbPb, ~100% 
effect!

● Poisson vs Gaussian is O(10-  25 )%
 effect size



35

Heavy Flavour Suppression in pPb

● Gaussian RAA ~ Poisson RAA ; 
Surprising since CLT should not be 
valid

●  Extremely sensitive to elastic energy 
loss model (x2 suppression)
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Light Flavour Suppression in pPb and dAu

Models qualitatively consistent with data in dAuHigh pT RAA qualitatively consistent with SPL 
result, but low pT dramatically inconsistent

pPb dAu
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Gaussian ~ Poisson?

● Opposite ordering than expected 
according to CLT?

● Strong 
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Gaussian ~ Poisson?

● Opposite ordering than expected 
according to CLT?

● Strong 

Gaussian distribution not a good fit for 
either small or large systems
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Gaussian ~ Poisson?

● Opposite ordering than expected 
according to CLT?

● Strong 

Gaussian distribution not a good fit for 
either small or large systems

 → Why is Gaussian RAA  ~ Poisson 
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Why is Gaussian ~ Poisson?

1) In small systems: small energy loss 
⇒ RAA depends mostly on average 
energy loss 

One can show that:

2) In large systems: elastic energy loss 
small fraction compared to radiative 
energy loss
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Preliminary results!

We want to understand:
● Do different elastic/radiative energy loss models  different →

signatures in energy loss?
● Can one simultaneously describe suppression (or lack thereof) in small 

and large systems?
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Preliminary results!

We want to understand:
● Do different elastic/radiative energy loss models  different →

signatures in energy loss?
● Can one simultaneously describe suppression (or lack thereof) in small 

and large systems?

 → Fit αs on a per model basis
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Global α-Fitted Results at RHIC

● Very different αs required 
for different models

● All models can fit both small and large 
systems, but HTL closer to data



44

Global α-Fitted Results at the LHC (heavy)

● All data over suppressed, especially 
small systems

Heavy flavour RAA is especially 
sensitive to elastic energy loss choice

Preliminary Preliminary
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Global α-Fitted Results at the LHC (light)

Too good to be true? No space for 
running coupling effects

Over-suppressed in pPb with DGLV, 
qualitative agreement at high pt with SPL

Preliminary Preliminary
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● RAA largely independent of distribution used for elastic 
energy loss
⇒ More sensitive at low √s, low pT  and large systems

Summary

● System size scan with global fitted αs 

● Small systems are almost entirely elastic energy loss
⇒ System size scan in RAA could disentangle radiation vs 

elastic energy loss mechanisms
● Model is qualitatively consistent with data in both dAu 

and AuAu

dAu

● HTL vs vacuum propagators ● Detailed uncertainty analysis
Future work:



Bonus Slides
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Why is Gaussian ~ Poisson?
Consider moment expansion of RAA

Small <n> => Gaussian RAA ~ Poisson RAA 
since zeroth and first moments are identical
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Elastic vs Radiative E-Loss Importance

Elastic ∆ E / E ≃ α2 T2 log (ET)/E  
Radiative ∆ E / E ≃ αs

 3 L2 T log E / E 

● Strong dependence on elastic E-
loss used

● Small systems elastic is ~1-3x 
more important than radiative
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Large Formation Time Assumption

● Large contributions to SPL corr. at high 
energies from regions of phase space not 
allowed according to Large Formation Time 
assumption

● Also impacts DGLV
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Large Formation Time Assumption
● Large contributions to SPL corr. at high 

energies from regions of phase space not 
allowed according to Large Formation Time 
assumption

● Also impacts DGLV
● Future work should include a full rederivation of 

DGLV with LFT assumption relaxed
● Can implement a phenomenological cut in the 

phase space as well to limit assumption-
violating contributions
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Turning Off Elastic E-Loss
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Gluon to Light Quark Crossover
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HTL vs Vacuum propagators
● HTL expands in momentum transfer: q / T ≃ gs 

● For large momentum transfer, vacuum propagators should be the correct 
theory

● The way in which you cross between the two, changes the longitudinal 
and transverse components

● Makes a large difference in energy loss 
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Controlling the LFT approximation
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Example contribution to SPL corr.

Pole at 
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