The NA60+ experiment at the CERN SPS

Sabyasachi Siddhanta

INFN Cagliari

On behalf of the NA60+ collaboration

https://na60plus.ca.infn.it

Motivation

- Heavy ion collisions at low energies $(\sqrt{s_{NN}} = 6 17 \text{ GeV})$ tool to investigate the QCD phase diagram at large μ_B
- Could give insights to open questions at large μ_B
 - First order phase transition
 - Presence of a critical point
 - Chiral symmetry restoration

A new fixed-target experiment is proposed at the CERN SPS at $\sqrt{s_{NN}} = 6 - 17$ GeV : NA60+ Probe hard and electromagnetic processes in the SPS range 220 < μ_B <550 MeV

NA60+

- Fixed-target experiment proposed at the CERN SPS
- Beam energy scan at 6-17 GeV complementary to RHIC and NA61/SHINE
- High interaction rate (~100 kHz)
- Energy + rate combination is unique

Physics motivation

Several new and unique measurements for EM and hard processes in the region $\sqrt{s_{NN}} = 6 - 17$ Gev

- First order phase transition temperature measurement with thermal dimuons
- Chiral symmetry restoration with thermal dimuons
- Elliptic flow
- Charmonia suppression
- Open charm measurements
 - transport coefficients
 - hadronization mechanisms
- Strangeness production
- Hypernuclei production

R. Arnaldi, Prospects for open heavy-flavour and quarkonium measurements with NA60+ Track2-HF&Q, June 5, 12:00

NA60+ setup

Vertex region

Vertex detector– stitched MAPS

- Each telescope plane contains 4 large area silicon MAPS (based on wafer-scale sensors)
- Synergy with ALICE ITS3
- Sensor based on ~25 mm long units (RSU), replicated 6 times through stitching up to ~14 cm length for NA60+
- Powering and data transmission from right side
- Maximum rate: 6 MHz/cm² → ok for 1-1.5x10⁶ Pb/s

Next presentation by C. Wang: The ITS3 detector and physics reach of the LS3 ALICE Upgrade

Muon tracker

- Technology choices MWPC, GEMs
- Suitable for charged particle rate foreseen ~2kHz/cm²
- Thick hadron absorber (235 cm of BeO + C) modest rates in the upstream stations
- Prototypes tested at CERN SPS in 2022 and 2023

Muon tracker – beam tests

- -50 x [mm] -100 Reconstructed hits in the MWPC detector Rough evaluation of chamber^[mm] resolution ~100 µm S. Siddhanta, SQM 2024, Strasbourg
- Beam tests with MWPC chambers (1 mm readout strips) and GEMs
 - ~60 cm off the beam line to reduce event multiplicity
 - Continuous readout for MWPC
 - Coincidence of scintillators signals to tag the events (trigger for GEMs)
 - > MWPC resolution ~100 μm
 - GEM data analysis ongoing

Toroidal magnet

- Ongoing R&D at CERN (support mechanics, magnetic field calculations, cost estimate)
- Eight sectors with 36 turns per coil
- · Low material budget in the acceptance area
- Advanced stage studies on coil design, choice of the power converter, cooling study, preliminary support mechanics
 S. Siddhanta, SQM 2024, Strasbourg

Experimental area

- NA60+ will be installed in the CERN EHN1 - PPE138 area along the H8 beam line
- High-intensity (10⁶ ions/s)
- Heavy shielding of iron and concrete dose below 3 µSv/h externally to the experiment (studied by CERN-HSE group)
- Collimated beam → a fully re-designed optics
 - Promising results from October 2023 test beam: $\sigma \sim 280 \ \mu m$

Performance studies – thermal dimuon mass spectrum

- Thermal radiation yield accessible up to M = 2.5 - 3 GeV/c²
- T_{slope} extracted by fitting the region $1.5 < M < 2.5 \text{ GeV/c}^2$
- ~2% uncertainty on the T_{slope} measurement - allows an accurate mapping of the \sqrt{s} dependence of T_{slope} around T_c

(0-5% central Pb-Pb collisions)

Performance studies – chiral symmetry restoration

- Investigated with the measurement of the $\rho\text{-}a_1$ mixing
- A 20-30% enhancement is expected in the region 0.8 < M < 1.5 GeV/c² for full chiral mixing
- NA60+ could detect a signal of chiral symmetry restoration

Performance studies – strangeness

S. Siddhanta, SQM 2024, Strasbourg

Performance studies – strangeness

- Performance studies for $\,\Omega$ and φ
- Studies performed also for K⁰_S
- Possibility of v₂ measurements

Performance studies – hypernuclei

- High precision measurement of the properties of Λ hypernuclei
- Possible discovery of light Ξ and Σ hypernuclei

Present status

- The <u>Letter of Intent</u> for the NA60+ experiment was submitted to the SPSC at the end of 2022 and was discussed in February 2023 with a favorable feedback
- Project mentioned in US 2023 Long Range Plan for Nuclear Science and in the NUPECC Long Range Plan 2024
- Significant progress was made in the detector and toroidal magnet R & D and beam optics studies in the last year
- Preparation and consolidation ongoing for the Technical proposal
- Technical proposal to be submitted in end 2024

Outlook

- Construction during LS3 (2026-28)
- Data taking over 7 years from 2029
- One energy point each year including AA and p-A

	Year 1	Year 2	Year 3	Year 4-5	Year 6	Year 7
Beam energy (A GeV)	160	40	120	20 (30)	80	60
Momentum per charge (GeV/c/Z)	406	101	304	50.7 (76.1)	203	152
Pb ions on target	$\sim 10^{12}$ per energy (~ 30 days)					
protons on target	$5 - 6 \cdot 10^{13}$ per energy (~ 22 days)					

We welcome additional teams to join the effort! There is still room for impactful contributions.

https://na60plus.ca.infn.it