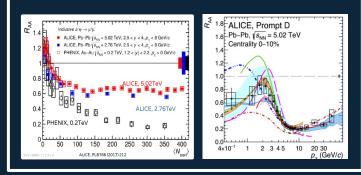
Prospects for open heavy-flavour and quarkonium measurements with NA60+

Roberta Arnaldi INFN Torino (Italy)

on behalf of the NA60+ Collaboration

3-7 June 2024, Strasbourg, France


Open and hidden charm: from LHC to SPS

2

Open charm and quarkonia in nuclear collisions → probes of QGP

high energy: RHIC / LHC

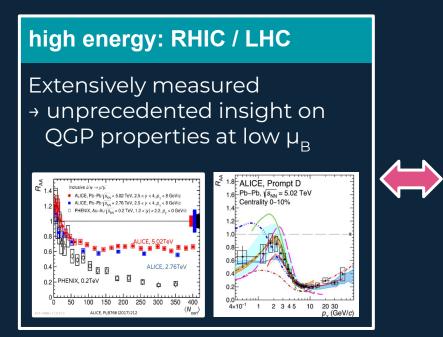
Extensively measured → unprecedented insight on QGP properties at low µ_B

low energy: fixed target

open charm

very few results

- indirect open charm measurement by NA60 with 20% uncertainty (1 < M < 2.5 GeV/c²)
- (1 < M_{μμ} < 2.5 GeV/c²)
 upper limit on D⁰ by NA49
- new NA61 result (Xe-La, $\sqrt{s_{NN}}$ = 16.8 GeV)


quarkonium

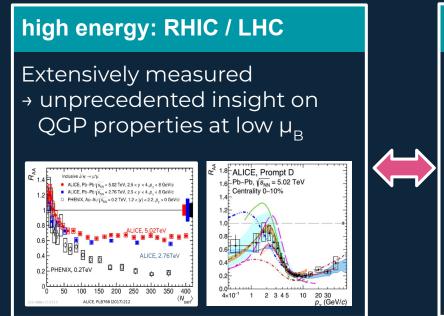
many results for J/ ψ , ψ (2S) by NA50/60, but only at top SPS energy

Open and hidden charm: from LHC to SPS

3

Open charm and quarkonia in nuclear collisions -> probes of QGP

low energy: fixed target


NEW high precision open and hidden charm measurements would allow to

- probe the medium at lower T wrt collider experiments
- 2) explore a non-zero $\mu_{\rm B}$ region

Open and hidden charm: from LHC to SPS

4

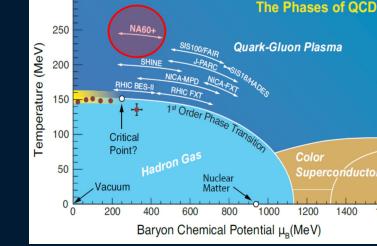
Open charm and quarkonia in nuclear collisions → probes of QGP

low energy: fixed target

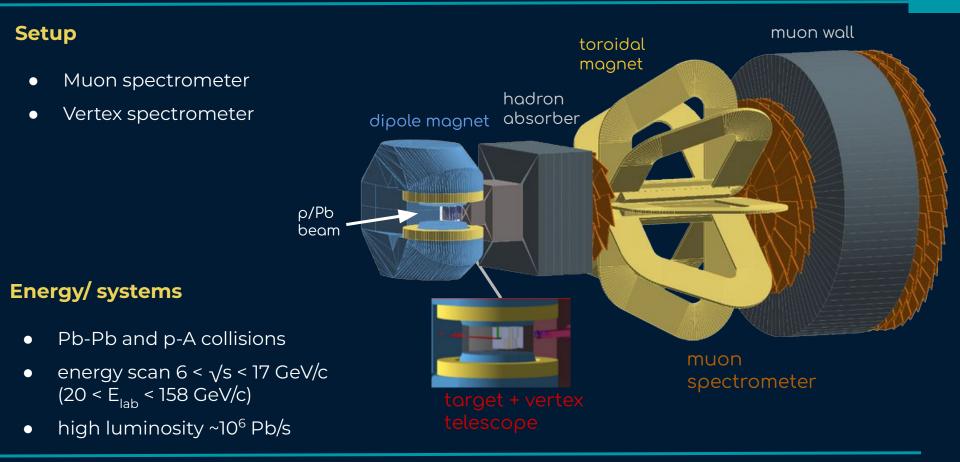
NEW high precision open and hidden charm measurements would allow to

- 1) probe the medium at lower T wrt collider experiments
- 2) explore a non-zero $\mu_{\rm B}$ region

new experiment proposed at CERN SPS: **NA60+**

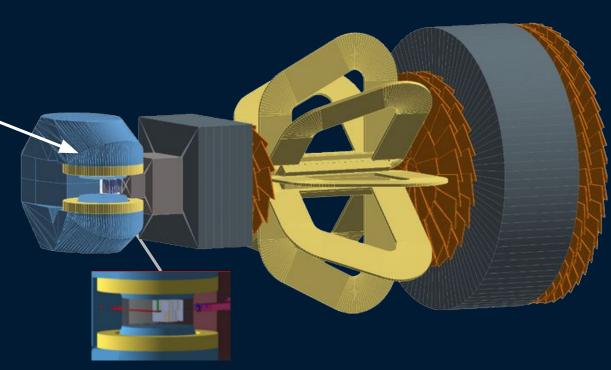

> Sabyasachi Siddhanta, Tue June 4th Piotr Podlaski, Fri June 7th

The NA60+ experiment at CERN SPS

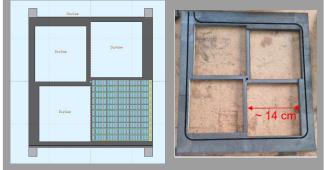

NA60+ will explore the QCD phase diagram at high baryon chemical potential

- performing precision studies of hard and electromagnetic processes accessing
 - muon pair production from threshold up to $m_{\mu\mu} \sim 4 \text{ GeV/c}^2$ (dilepton continuum, low mass resonances, quarkonia)
 - hadronic decays of strange and charm hadrons, hypernuclei

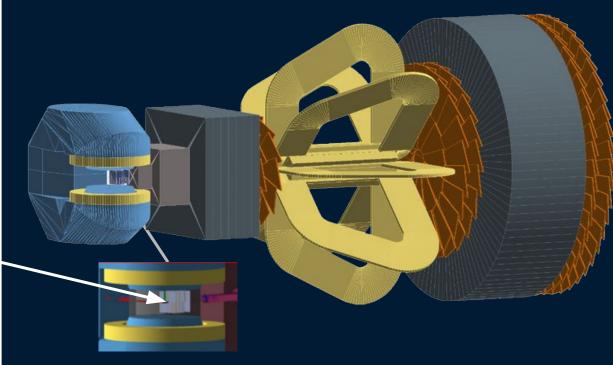
- via a beam energy scan between $\sqrt{s_{_{NN}}} \sim 6 17$ GeV, exploring the $\mu_{_B}$ range ~220 550 MeV
- exploiting large luminosities, needed for rare QGP probes studies
 - PbPb interactions rates > 10^5 Hz, reachable with 10^6 Pb/s in a fixed target environment


300

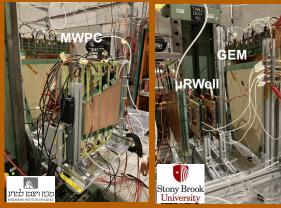
Roberta Arnaldi


MEP48 (available at CERN), 1.5 T field over 400 mm gap

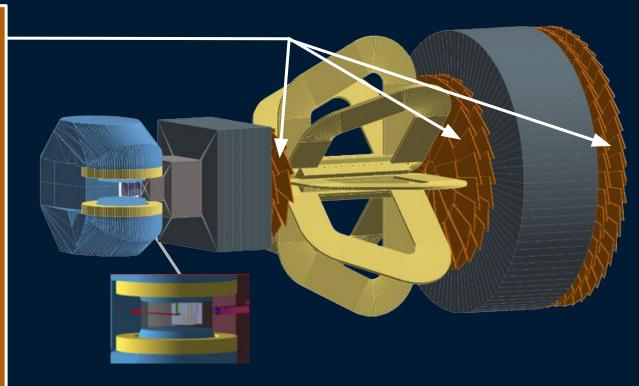
Roberta Arnaldi



Vertex spectrometer 5 layers of MAPS detectors


sensor based on 25 mm long units, replicated several times through stitching up to 15 cm length

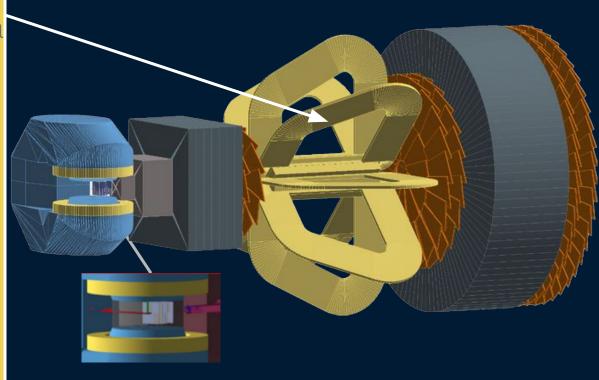
synergy with ALICE ITS3 → first large area stitched sensor (MOSS) currently being tested



Muon spectrometer position will be varied (rails), to cover mid-y at different √s

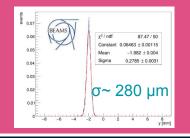
GEM or MWPC can match the expected rates (2 kHz/cm²)

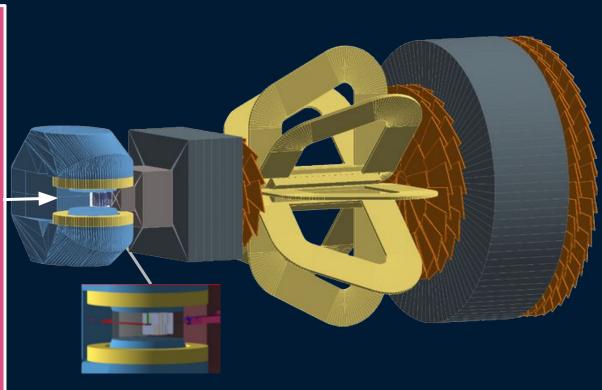
First prototypes characterised in Fall 23



Warm toroid

- Eight sectors with 36 turns per coil
- Light design → low material
 budget in the acceptance area

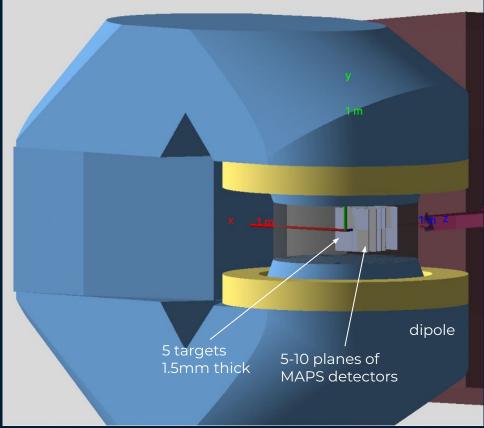

Prototype (1:5 scale) built and tested to check calculations and investigate mechanical solutions



Roberta Arnaldi

Beam studies

- NA60+ will be installed in the CERN EHN1 - PPE138 area along the H8 beam line
- very stringent beam requests at all energies
- high-intensity (10⁷ Pb/spill)
- extremely focussed sub-mm beam (vertex spectrometer will have 6 mm hole)
- beam optics studies ongoing (up to 2.4 10⁶ Pb/spill at 150 GeV)



How to measure open charm in NA60+

Measurement performed through hadronic decays reconstructed in the vertex telescope

	Mass (MeV)	ст (µm)	decay	BR
D ⁰	1865	123	K⁻π⁺	3.95%
D+	1869	312	K⁻፹⁺፹⁺	9.38%
D ⁺ _s	1968	147	фπ⁺	2.24%
۸ _c	2285	60	ρΚ⁻π⁺ ρΚ ⁰ ₅ Λ π⁺	6.28% 1.59% 1.30%

Combinatorial background reduced via geometrical selection on the displaced decay-vertex topology

Roberta Arnaldi

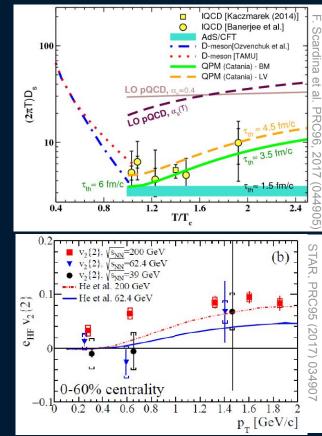
SQM 2024

Open charm in AA at low \sqrt{s}

QGP transport properties

Charm diffusion coefficient depends on the medium T, being larger in the hadronic than in QGP phases

At SPS


2

- temperatures closer to T_{PC} can be explored
- hadronic phase is a large part of the collision evolution
 sensitivity to hadronic interactions
 input for precision measurements at LHC

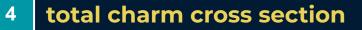
charm thermalization

Impact on charm of a shorter-lived medium can be explored

• current measurements on HF-decay electron v₂ at RHIC $\sqrt{s_{_{NN}}}$ = 39 and 62 GeV/c show small v₂ wrt 200 GeV, not conclusive on v₂ > 0

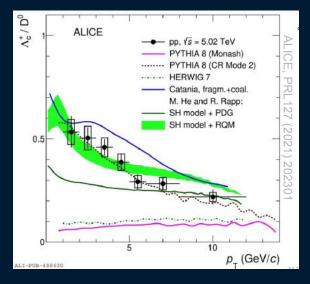
Roberta Arnaldi

SQM 2024


Open charm in AA at low \sqrt{s}

3

hadronisation mechanisms


Measure the relative abundances of charm-hadrons $(D^0, D^+, D^+_s \text{ mesons and } \Lambda_c \text{ baryons})$ in a high μ_B environment

- Strange/non-strange meson ratio (D_s/D^0)
 - enhanced in AA due to recombination in the strangeness rich QGP
- Baryon/meson ratio (Λ_c /D)
 - enhanced in AA in case of hadronisation via coalescence
 - interesting also in pp and pA, as observed at LHC

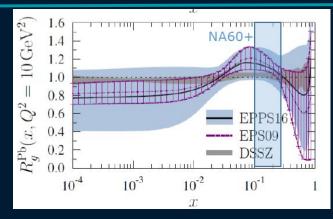
Limited measurements so far (NA60,NA49) because of low yields

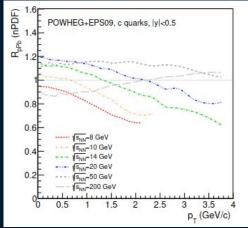
- precise measurement requires to reconstructs mesons and baryons ground states
- ideal reference for charmonia

Roberta Arnaldi

Open charm in pA at low \sqrt{s}

5 n


nuclear PDFs via D meson production in pA


NA60+ will cover 0.1 < x_{Bi} < 0.3 at $Q^2 \sim 10-40 \text{ GeV}^2$

- EMC and anti-shadowing regions accessible
- PDFs poorly constrained by existing data

NA60+ will use several nuclear targets, from Be to Pb

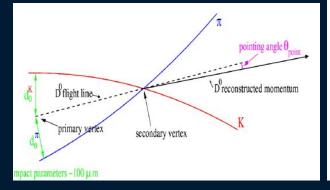
- access to the A-dependence of nPDF
- precise inputs to nPDF from D production ratios pA/pBe at different \sqrt{s} , vs y and p_T

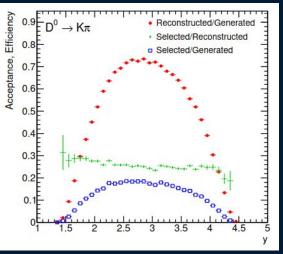
SQM 2024

D mesons performance studies

Fast simulation:

D-meson: signal simulated with p_T and y distributions from POWHEG-BOX + PYTHIA Combinatorial background: π , K, p with multiplicity, p_T and y shapes from NA49

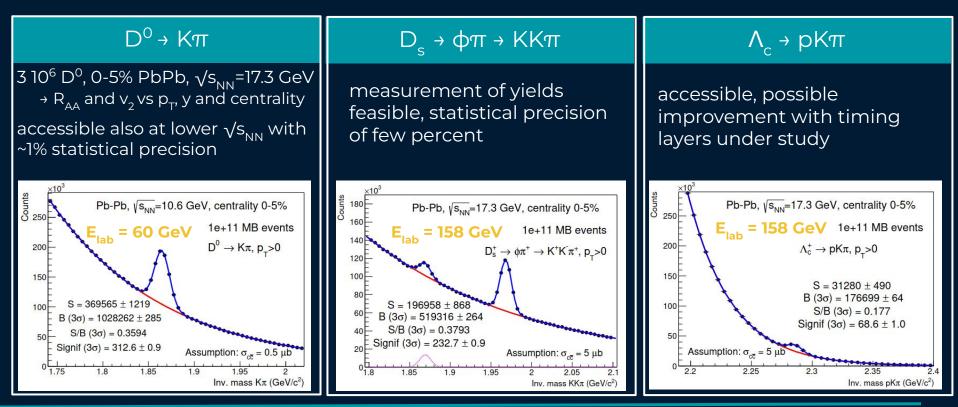

Particle transport: carried out in the VT, with parametrized simulation of its resolution Track reconstruction: Kalman filter



D-meson vertex reconstructed from decay tracks Geometrical selections based on decay vertex topology

D⁰ in central PbPb:

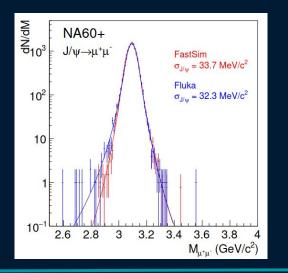
- initial S/B ~10⁻⁷
- after selections S/B ~0.5

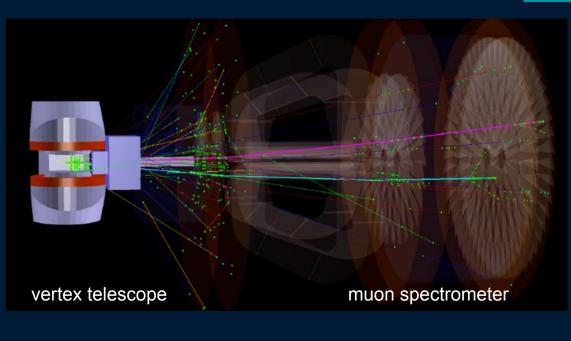


Charm hadrons performance studies

17

with 10¹¹ MB Pb-Pb collisions (1 month of data taking)


SQM 2024


Roberta Arn<u>aldi</u>

How to measure quarkonium in NA60+

Charmonium production studied via

- J/ ψ and ψ (2S) in the $\mu^+\mu^-$ decay channel
- χ_c → J/ψ γ, with γ measured via conversion in a lepton pair in the vertex telescope

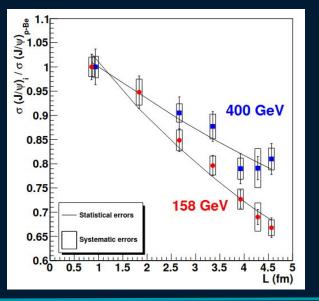
Muon tracks obtained matching tracks in vertex and muon spectrometer

→ very good mass resolution, ~30 MeV for the J/ ψ

Roberta Arnaldi

19

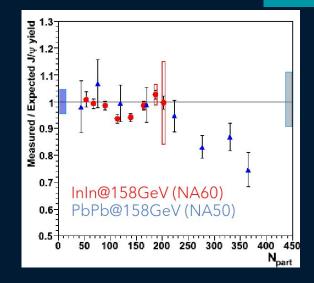
Different hot and cold nuclear effects at play:


RHIC / LHC	SPS	
Hot matter effects suppression and regeneration	Hot matter effects suppression	1.6 • ALICE, Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV } y < 0.9 p_{T} > 0.15 \text{ GeV/c}$ • STAR, Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV } y < 0.5 p_{T} > 0.15 \text{ GeV/c}$ • NA50, Pb-Pb $\sqrt{s_{NN}} = 17 \text{ GeV } 0 < y < 1$ 1.2
Initial state effects mainly shadowing 10 ⁻⁵ <x<sub>BJ< 10⁻² for -3 <y< 3<="" td=""><td>Initial state effects (anti)shadowing x_{BJ}~ 10⁻¹ for y~0</td><td>0.8 0.6 0.4 0.4 0.8 0.6 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6</td></y<></x<sub>	Initial state effects (anti)shadowing x _{BJ} ~ 10 ⁻¹ for y~0	0.8 0.6 0.4 0.4 0.8 0.6 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Final CNM effects negligible, due to short crossing time $\tau=L/(\beta_z \gamma)$ ~7 10 ⁻⁵ (y~3) - 4 10 ⁻² (y~-3) fm/c	Final CNM effects sizable breakup in nuclear matter T~0.5 fm/c for y~0	0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0

Quarkonium in pA and AA at low \sqrt{s}

AA:

accurate measurements from NA50/NA60 at top SPS energy


- ~30% J/ ψ anomalous suppression in central PbPb, beyond CNM
- consistent with J/ ψ suppression from ψ (2S) and χ_c feed-down
- significant contribution from CNM effects

pA:

precise measurement of CNM

- anti-shadowing contribution
- nuclear break-up dominant, stronger at lower \sqrt{s}

Roberta Arnaldi

SQM 2024

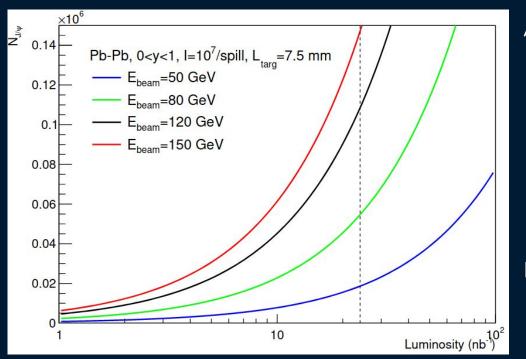
Charmonium in NA60+

Quarkonium never studied below top SPS energies

3

AA: onset of charmonium suppression

accessible via energy scan

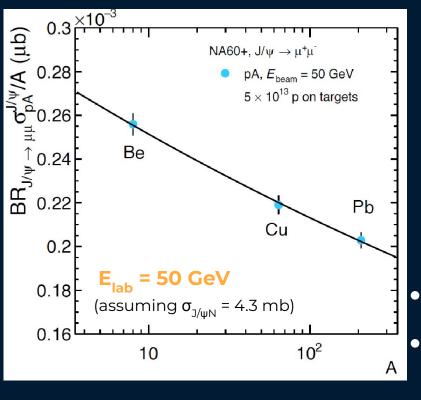

- evaluate the threshold temperature of the charmonium melting correlating the onset with T measured via thermal dimuons
- 2 pA: cold nuclear matter effects
 - CNM effects increase at low \sqrt{s}
 - mandatory (at the same \sqrt{s} as AA) for a correct evaluation of hot matter effects
 - disentangle the various contributions (shadowing, nuclear breakup...)
 - pA: intrinsic charm

expected enhanced charm production at large x_{F}

- fixed target is the ideal configuration \rightarrow enhancement is expected closer to mid-y
- dominant effect even with 0.1% probab. of intrinsic charm contribution in the proton (R. Vogt. PRC 103 (2021)3, 035204)

Charmonium in AA

High luminosity is needed to cope with the low production cross sections at low \sqrt{s}


Assuming:

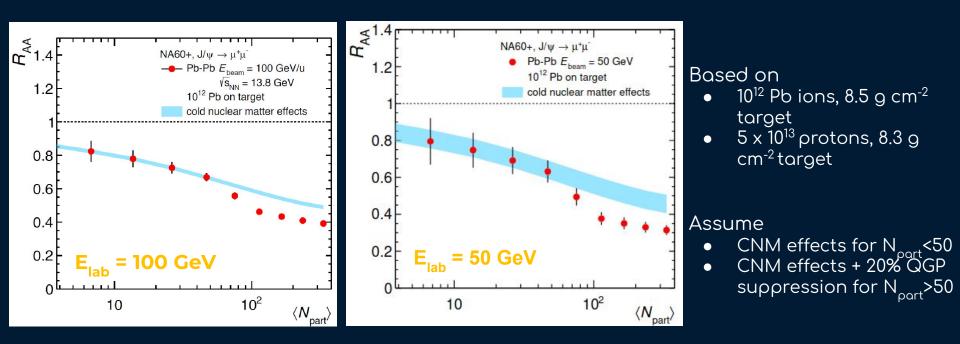
- I_{beam}~10⁷ Pb/spill, 7.5 mm target, 1 month data taking→ L_{int}~24 nb⁻¹
- a factor 3 overall suppression (CNM+ QGP)

NA60+ can aim at ~O(10⁴) J/ψ at 50 GeV ~O(10⁵) J/ψ at 158 GeV

Charmonium in pA

$\rho\text{-}A$ data taking mandatory to calibrate CNM effects

Assuming:

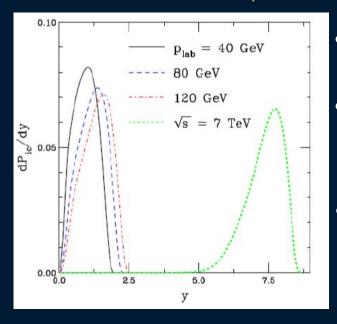

 I_{beam}~5 10¹³ ρ on target, target thickness 8.3 g/cm2

• NA60+ can aim at

~8000 J/ψ at 50 GeV ~60000 J/ψ at 158 GeV

pA data will provide an estimate of CNM effects extrapolating the pA measurements down to A = 1, we can estimate σ_{pp} , to be used in the R_{AA} evaluation

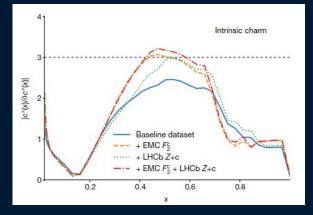
Charmonium R


Precise evaluation of anomalous suppression within reach even at low energy Uncertainties on CNM (σ_{abs}) are ~6 - 15% at 158 and 50 GeV, respectively

Roberta Arnaldi

SQM 2024

Intrinsic charm


Intrinsic charm component of the hadron wave function |uudccbar> enhanced charm production in the forward region

R. Vogt PRC 103, 035204 (2021) R. Vogt arXiv:2207.04347

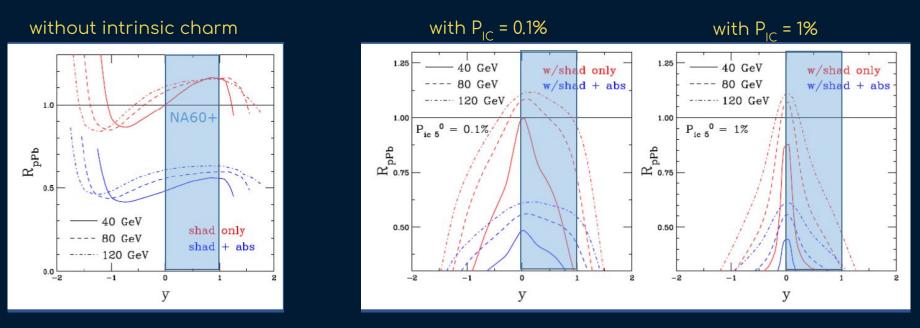
- at collider energies, the region where the IC effects can be observed is at very large y
- for fixed-target, low \sqrt{s} , the enhancement is closer to mid-y

 first evidence recently claimed by NNPDF group based on LHCb data (Nature 608,483(2022))

Roberta Arnaldi

SQM 2024

Intrinsic charm


•

26

EPPS16 shadowing \bullet

p-Pb collisions:

- σ_{abs} = 9, 10, 11 mb, \tilde{E}_{lab} = 120, 80, 40 GeV Intrinsic charm content P_{ic} varied between 0.1 and 1% •

 R_{oPb} shape is dominated by intrinsic charm already with P_{ic} = 0.1%

Roberta Arnaldi

SOM 2024

- Project is part of CERN Physics Beyond Collider Initiative
- LOI released at the end of 2022 (arXiv:2212.14452) and discussed with SPSC
- Expect proposal at the end of 2024
- Aim is taking data in 2029, after LHC LS3
 - 7-years running with Pb beam (one beam energy per year)
 - proton beams for reference and dedicated p-A studies

https://na60plus.ca.infn.it/

The NA60+ Collaboration

C. Ahdida¹, G. Alocco^{2,3}, F. Antinori⁴, M. Arba³, M. Aresti^{2,3}, R. Arnaldi⁵, A. Baratto Roldan¹,
S. Beolè^{6,5}, A. Beraudo⁵, J. Bernhard¹, L. Bianchi^{6,5}, M. Borysova^{7,8}, S. Bressler⁷, S. Bufalino^{9,5},
E. Casula^{2,3}, C. Cicalò³, S. Coli⁵, P. Cortese^{10,5}, A. Dainese⁴, H. Danielsson¹, A. De Falco^{2,3},
K. Dehmelt¹¹, A. Drees¹¹, A. Ferretti^{6,5}, F. Fionda^{2,3}, M. Gagliardi^{6,5}, A. Gerbershagen¹²,
F. Geurts¹³, V. Greco^{14,15}, W. Li¹³, M.P. Lombardo¹⁶, D. Marras³, M. Masera^{6,5}, A. Masoni³,
L. Micheletti¹, L. Mirasola^{2,3}, F. Mazzaschi^{1,6}, M. Mentink¹, P. Mereu⁵, A. Milov⁷, A. Mulliri^{2,3},
L. Musa¹, C. Oppedisano⁵, B. Paul^{2,3}, M. Pennisi^{6,5}, S. Plumari¹⁴, F. Prino⁵, M. Puccio¹,
C. Puggioni³, R. Rapp¹⁷, I. Ravinovich⁷, A. Rossi⁴, V. Sarritzu^{2,3}, B. Schmidt¹, E. Scomparin⁵,
S. Siddhanta³, R. Shahoyan¹, M. Tuveri³, A. Uras¹⁸, G. Usai^{2,3}, H. Vincke¹, I. Vorobyev¹

1 .European Organization for Nuclear Research (CERN), Geneva, Switzerland

- 2 .Dipartimento di Fisica dell'Università di Cagliari, Cagliari, Italy
- 3 .INFN, Sezione di Cagliari, Cagliari, Italy
- 4 .INFN, Sezione di Padova, Padova, Italy
- 5 .INFN, Sezione di Torino, Turin, Italy
- 6 .Dipartimento di Fisica dell Università di Torino, Turin, Italy
- 7 .Department of Particle Physics and Astrophysics, Weizmann Insitute of Science, Rehovot, Israel
- 8 .Kyiv Institute for Nuclear Research (KINR), Natl. Acad. of Sci. of Ukraine (NASU)
- 9 .Dipartimento DISAT del Politecnico di Torino, Turin, Italy
- Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale, Alessandria, Italy
- 11 .Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York, USA
- 12 .Department of Radiation Oncology, University of Groningen, Groningen, The Netherlands
- 13 .Department of Physics and Astronomy, Rice University, Houston, Texas, USA
- 14 .Dipartimento di Fisica e Astronomia dell'Università di Catania, Catania, Italy
- 15 .INFN, Laboratori Nazionali del Sud, Catania, Italy
- 16 .INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- 18 .Institut de Physique des 2 Infinis de Lyon, Université de Lyon, CNRS/IN2P3, Lyon, France

- the LoI was signed by 62 physicists, engineers, technicians
- support also from members of the QGP theory community

- funding for the R&D phase since 2020 allowed us to complete the LoI preparation
- ongoing contacts to strengthen the Collaboration

Conclusions

No results, so far, on open charm and charmonia below top SPS energy

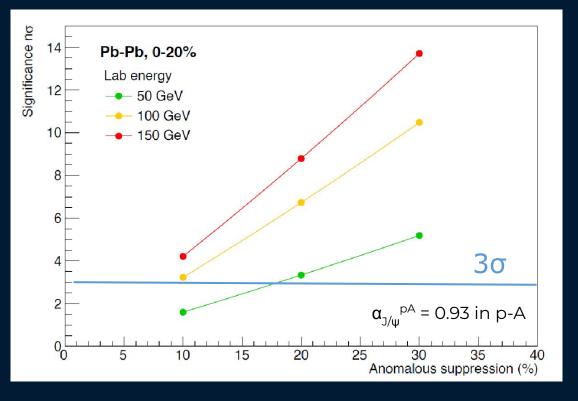
Measurements from $\sqrt{s_{_{
m NN}}}$ ~ 6 - 17 GeV/c extremely relevant to investigate

- QGP transport properties at high μ_{R}
- charm thermalization and hadronization
- intrinsic charm
- onset of charmonium anomalous suppression, correlation with temperature

NA60+: new experiment proposed at CERN SPS

participation to the NA6O+ realization and feedback on the physics program is welcome!

Several Anti-The 21⁴ International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France


https://na60plus.ca.infn.it/

Roberta Arnaldi

SQM 2024

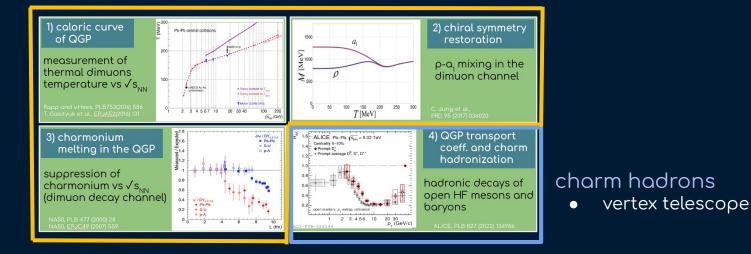
Backup slides

charmonium R

 10% anomalous suppression signal detectable at 3σ for E_{lab}>100 AGeV

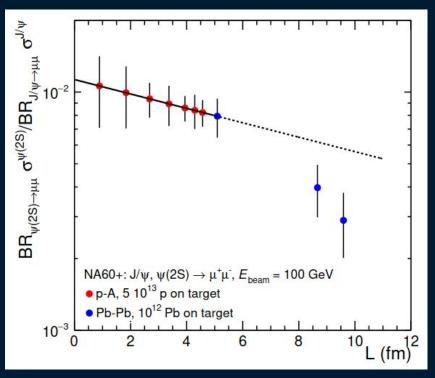
 20% anomalous suppression signal detectable at 3σ for E_{lab}>50 GeV

Physics performances of NA60+


Collision systems

Forse questa slide non serve

- PbPb
 - \rightarrow data taking: 1 month per year
- ρΑ
 - ightarrow data taking at the same energies as AA collisions, with similar integrated luminosity

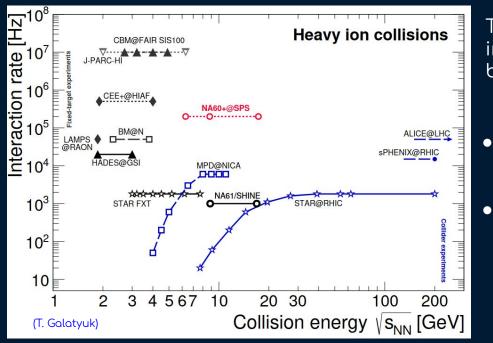


- vertex telescope
- muon spectrometer

ψ (2S) in pA and AA

Good charmonium resolution (30 MeV for J/ ψ) will help ψ (2S) measurements:

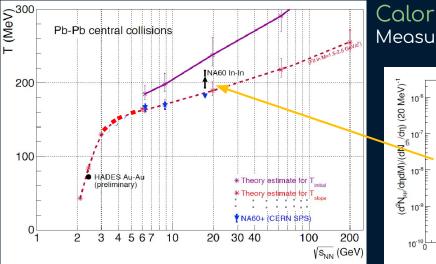
Assume


• stronger suppression for $\psi(2S)$ than J/ ψ

 $\psi(2S)/\psi$ measurement feasible down to $E_{lab} \sim 100 \text{ GeV}$

Lower E_{lab} would require larger beam intensities/longer running times

Uniqueness of NA60+


The NA60+ program needs a large luminosity to search for rare QGP probes

This luminosity can be collected with PbPb interactions rates > 10⁵ Hz, reachable with 10⁶ s⁻¹ beam intensity in a fixed target environment

- NA60+ is unique, for energy coverage AND interaction rate, in the heavy-ion landscape
- NA60+ is complementary to experiments accessing:
 - different (hadronic) observables in the same energy range (STAR BES, NICA, NA61)
 - similar observables in a lower energy range (CBM)

thermal dimuons

Caloric curve of the QGP Measurements only at top SPS energy and at very low energy

In-In dN_{ef}/dtp-30 • excess dimuons • Renk/Ruppert • Hees/Rapp • Dusling/Zahed • 0.5 1 1.5 2 2.5 M (GeV) HADES, Nature Phys. 15(2019) 1040 NA60, EPJC 61(2009) 711

dilepton T_{slope} measurement \Box (average) temperature of the early stage of the system

SPS energy

accurate information on the region close to the deconfinement transition temperature
 possible signal of a 1st order phase transition

Roberta Arnaldi

thermal dimuons in NA60+

50 MeV

dN/dM per

 10^{6}

10⁵

10

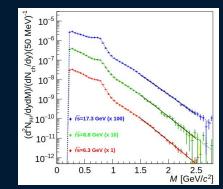
 10^{3}

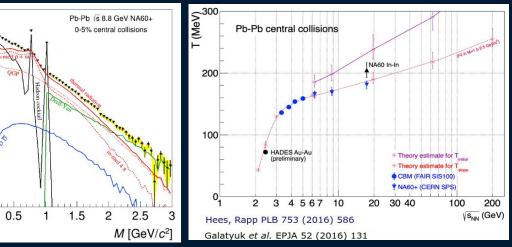
10²

10

Thermal radiation yield

- accessible up to M= 2.5-3GeV/c²
- dominated by p contribution at low mass


Drell-Yan contribution


□ to be estimated via p-A measurements

Open charm contribution

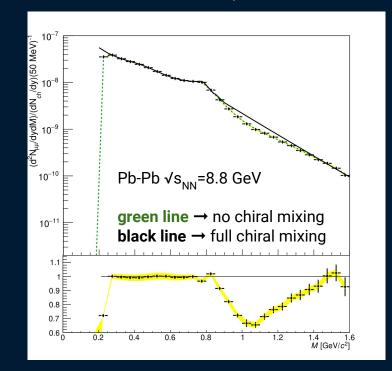
negligible dimuon source

~1-3% uncertainty on the evaluation of T_{slope}

- accurate mapping of T_s
 √s-dependence around T_{pc}
 strong sensitivity to possible
- strong sensitivity to possible flattening of the caloric curve due to 1st order transition

Physics opportunities with proton beams at SIS100

Roberta Arnaldi

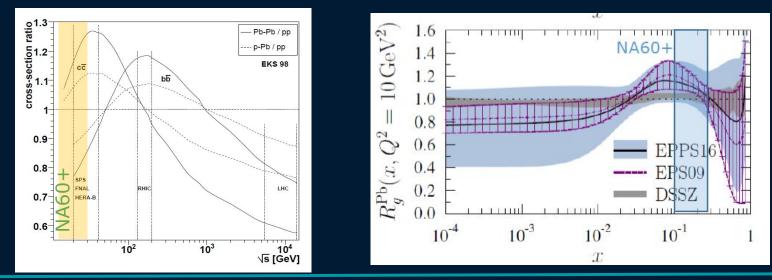

<u>ρ-a, mixing in NA60+</u>

Chiral symmetry restoration investigated with the measurement of the p-a1 mixing

Full $\rho\text{-}a_1$ chiral mixing detected studying the modification of the dimuon continuum

→ a 20-30% enhancement is expected in the region 0.8 < M < 1.5 GeV/c² w.r.t. no mixing

NA60+ could clearly detect a signal of chiral symmetry restoration

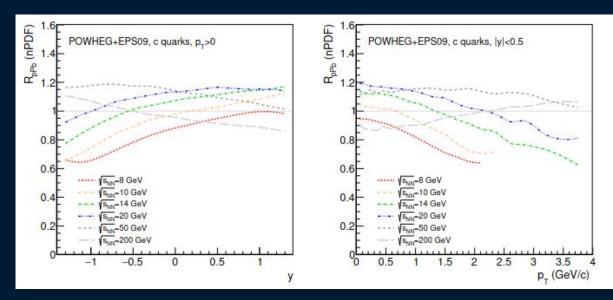


Open charm in pA at low \sqrt{s}

nuclear PDFs via D meson production in pA

NA60+ will cover the range 0.1 < x_{Bi} < 0.3 at $Q^2 \sim 10-40 \text{ GeV}^2$

- EMC and anti-shadowing regions accessible
- PDFs poorly constrained by existing data



Open charm in pA at low \sqrt{s}

nuclear PDFs via D meson production in pA

NA60+ will use several nuclear targets, from Be to Pb

- access to the A-dependence of nPDF
- precise inputs to nPDF from D production ratios pA/pBe at different √s, vs y and p_T

