

Type: **Talk**

Measuring the Global Spin Alignment of ϕ meson in Heavy Ion Collisions by STAR

mercredi 5 juin 2024 11:40 (20 minutes)

SQM2024

In non-central heavy-ion collisions, a large orbital angular momentum is produced. A part of the orbital angular momentum can polarize the quarks and anti-quarks, hence the vector mesons, inside the medium. Recently, STAR measured the global spin alignment of $\phi(1020)$ and $K^*(892)$ mesons in Au+Au collisions from the RHIC Beam Energy Scan I (BES I) program [1]. The global spin alignment, quantified by the 00^{th} coefficient of the spin density matrix, ρ_{00} , is measured by a fit to the acceptance and efficiency corrected ϕ meson yield versus polar angle (θ^*) between the daughter kaon in the parent's rest frame and the orbital angular momentum direction. In this talk, we present an alternative approach to extract ρ_{00} by utilizing the $\langle \cos^2 \theta^* \rangle$ as a function of pair-invariant mass instead of analyzing the ϕ meson yields in $\cos\theta^*$ bins. We use a data-driven method to correct for acceptance and efficiency. We report new analysis from this method and discuss physics implications.

[1] M. Abdallah et al. (STAR Collaboration), Nature 614, 244-248 (2022).

Auteur principal: ROBERTSON, CW (Purdue University)

Co-auteur: COLLABORATION, STAR

Orateur: ROBERTSON, CW (Purdue University)

Classification de Session: Track4-Bulk&Phase

Classification de thématique: Bulk matter phenomena, QCD phase diagram and Critical point