Differential Measurements of ϕ-meson Global Spin Alignment in $\mathrm{Au}+\mathrm{Au}$ Collisions at STAR

Gavin Wilks for the STAR Collaboration (gwilks3@uic.edu)
University of Illinois at Chicago

ILLINOIS CHICAGO

Office of Science

Outline

- Introduction to global spin alignment
- Motivation for this analysis
- Analysis method
- Results for ϕ-meson ρ_{00} from $\mathrm{Au}+\mathrm{Au}$ collisions in STAR BES-II
- Summary

Introduction to Spin Alignment

(2)

- Non-central heavy-ion collisions generate large orbital angular momentum (OAM).
- This OAM can preferentially align a particle's spin projection along the spin quantization axis through spin-orbit coupling ${ }^{(1)}$.

STAR Collaboration, Nature 614 (2023) 7947.

Introduction to Spin Alignment

$\rho_{00}: 00^{\text {th }}$ element of the spin density matrix.
θ^{*} : angle between K^{+}daughter momentum and polarization axis (normal of reaction plane) in parent's rest frame.
ρ_{00} is found by fitting the parent particle's yield (N) vs $\cos \left(\theta^{*}\right)$. ${ }^{(1)}$
$\frac{d N}{d \cos \theta^{*}}=N_{0} \times\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]$
$\rho_{00} \neq 1 / 3$ indicates spin alignment.

STAR Collaboration, Nature 614 (2023) 7947.

ρ_{00} from BES-I

[1] STAR Collaboration, Nature 614 (2023) 7947.

- Significant positive global spin alignment ($\rho_{00}>1 / 3$) for ϕ-meson was measured for the first time in mid-central collisions. ${ }^{(1)}$
- $\rho_{00} \sim 1 / 3$ for $\mathrm{K}^{*}{ }^{0}$ in mid-central collisions.
- Mean lifetime of $\mathrm{K}^{* 0}$ is $\sim 10 \mathrm{x}$ smaller than ϕ (different in-medium interactions).
- If global spin alignment is driven by fluctuations in vector meson fields, fluctuations for d and \bar{s} are expected to be weaker than for s and \bar{s}.

Potential Contributions to ϕ-meson ρ_{00}

Physics Mechanism	P_{00}	
Fragmentation of polarized quarks ${ }^{(1)}$	$\lessgtr 1 / 3$	$\sim 10^{-5}$
Quark coalescence Magnetic components of EM and vorticity fields ${ }^{(1,2,3)}$	$<1 / 3$	$\sim 10^{-5}$
Electric part of vorticity tensor ${ }^{(2)}$	< $1 / 3$	$\sim 10^{-4}$
Electric field ${ }^{(2)}$	$>1 / 3$	$\sim 10^{-5}$
Helicity polarization ${ }^{(4)}$	$<1 / 3$	
Locally fluctuating axial charge currents ${ }^{(5)}$	$<1 / 3$	
Local vorticity loop + coalescence ${ }^{(6)}$	< $1 / 3$	
Vector meson strong force field ${ }^{(2,7)}$	$>1 / 3$	

- Significant positive global spin alignment ($\rho_{00}>1 / 3$) for ϕ-meson was measured at midcentral collisions from BES-I. ${ }^{(8)}$
- Cannot be explained by conventional polarization mechanisms.
- Supported by a theoretical model considering a ϕ-meson strong force field ${ }^{(2,7)}$.
- Couples to s and \bar{s} quarks.
[1] Liang et al., PLB 629, 20-26 (2005).
[2] Sheng et al., PRD 101, $096005(2020)$.
[3] Yang et al., PRC 97, $034917(2018)$.
[4] Gao et al., PRD 104, $076016(2021)$.
[5] Müller et al., PRD 105, L011901 (2022).
[6] Xia et al., PLB 817, 136325 (2021).
[7] Sheng et al., PRD 102, 056013 (2020).
[8] STAR, Nature 614 (2023) 7947.
[1] Liang et al., PLB 629, 20-26 (2005).
[2] Sheng et al., PRD 101, 096005 (2020).
[3] Yang et al., PRC 97, 034917 (2018).
[4] Gao et al., PRD 104, 076016 (2021).
[5] Müller et al., PRD 105, L011901 (2022).
[6] Xia et al., PLB 817, 136325 (2021).
[7] Sheng et al., PRD 102, 056013 (2020).
[8] STAR, Nature 614 (2023) 7947.

Potential Contributions to ϕ-meson ρ_{00}

Physics Mechanism	ρ_{00}	
Fragmentation of polarized quarks		
Quark coalescence	$\lessgtr 1 / 3$	$\sim 10^{-5}$
Magnetic components of EM and vorticity fields		
$(1,2,3)$		

- ϕ-meson mean field (if exists), can polarize $s \bar{s} \rightarrow$ global spin alignment.
- Electric and magnetic components of ϕ field from field potential, ϕ^{μ}.

$$
\begin{gathered}
F_{\phi}^{\mu \nu}=\partial^{\mu} \phi^{\nu}-\partial^{\nu} \phi^{\mu} \\
\phi^{\mu} \approx-\left(g_{\phi} / m_{\phi}^{2}\right) J_{s}^{\mu} \\
J_{s}^{\mu}(t, \mathbf{x})=\left(\rho_{s}, \mathbf{J}_{s}\right)=\left(\rho_{s}, j_{s}^{x}, j_{s}^{y}, j_{s}^{z}\right)
\end{gathered}
$$

Strangeness Conservation

$$
\partial_{\mu} J_{s}^{\mu}=0 \quad \int d^{3} \mathbf{x} \rho_{s}(t, \mathbf{x})=0
$$

Zero Net Strangeness

- Strangeness current in heavy-ion collisions could occur from nonequivalent PDFs, $s\left(x_{\mathrm{B}}\right) \neq \bar{s}\left(x_{\mathrm{B}}\right)$.

Leading theory prediction for ϕ-meson ρ_{00}

STAR Collaboration, Nature 614 (2023) 7947.

[1] Sheng et al., Phys. Rev. D 101, 096005 (2020).
[2] Sheng et al., Phys. Rev. D 102, 056013 (2020).

- BES-I results suggest non-monotonic behavior.

Fit to ϕ-meson data is described by:

$$
\rho_{00}\left(\sqrt{S_{N N}}\right)=\frac{1}{3}+\frac{1}{27 m_{S}^{2}\left[T_{e f f}\left(\sqrt{S_{N N}}\right)\right]^{2}} G_{S}^{(y)}
$$

With free parameter $G_{s}^{(y)}$:
$G_{s}^{(y)}=g_{\phi}\left[3\left\langle B_{\phi, y}^{2}\right\rangle+\frac{\left\langle\boldsymbol{p}^{2}\right\rangle_{\phi}}{m_{s}^{2}}\left\langle E_{\phi, y}^{2}\right\rangle-\frac{3}{2}\left\langle B_{\phi, x}^{2}+B_{\phi, z}^{2}\right\rangle-\frac{\left\langle\boldsymbol{p}^{2}\right\rangle_{\phi}}{2 m_{s}^{2}}\left\langle E_{\phi, x}^{2}+E_{\phi, z}^{2}\right\rangle\right]$
$T_{e f f}$: effective temperature of quark gluon plasma (QGP) fireball $g_{\phi:} \phi$-meson field coupling constant
$E_{\phi, i}\left(B_{\phi, i}\right)$: ${ }^{\text {th }}$ component of electric (magnetic) parts of ϕ-meson field m_{s} : strange quark mass
\boldsymbol{p} : strange quark momentum in ϕ rest frame
〈〉: average over the spacetime volume of polarization in QGP fireball

STAR BES-II

- Significantly increased sample sizes available from BES-II for identical energies.
- Improvements to the STAR detector.
- Increased event plane resolution.
- Tracking improvements.
- Many new collision energies available.
- Clarify behavior of ρ_{00} for lower collision energies and higher baryon densities.
- High precision differential measurements of ϕ-meson ρ_{00}.
- Provide guidance for future theoretical developments.

The STAR Detector


```
Full azimuthal coverage
TPC : \(|\eta|<1\)
iTPC \(^{\text {II: }}:|\eta|<1.5\)
```

tracking, centrality, particle
identification, and $2^{\text {nd }}$ order event plane reconstruction

TOF : $|\eta|<0.9$
eTOF ${ }^{\text {II }}:-1.1<\eta<-1.6$
particle identification
BBC : $3.9<|\eta|<5$
EPD $^{\text {II: }}: 2.1<|\eta|<5.1$
$1^{\text {st }}$ order event plane reconstruction
$\sim 2 \mathrm{x}$ greater EP resolution with EPD

Used in this analysis
${ }^{\text {II }}$ Upgrades to STAR since BES-I

ρ_{00} Extraction

- Event-mixing is used to subtract background and extract yields from histogram integration in seven $\left|\cos \theta^{*}\right|$ bins.
- Yields vs. $\left|\cos \theta^{*}\right|$ are corrected for the geometric acceptance, tracking, and PID related efficiencies.
- $\rho_{00}^{o b s}$ is extracted from a fit to the corrected yields vs. $\left|\cos \theta^{*}\right|^{(1)}: \frac{d N}{d \cos \theta^{*}}=N_{0} \times\left[\left(1-\rho_{00}^{o b s}\right)+\left(3 \rho_{00}^{o b s}-1\right) \cos ^{2} \theta^{*}\right]$
- Calculate ρ_{00} from $\rho_{00}^{o b s}$ accounting for EP resolution ${ }^{(2)}: \rho_{00}=\frac{1}{3}+\frac{4}{1+3 R}\left(\rho_{00}^{o b s}-\frac{1}{3}\right) ; \quad R=$ Event plane resolution.
[1] K. Schilling et al., Nucl.Phys.B 15 (1970) 397
[2] Tang et al., Phys. Rev. C 98, 044907 (2018).

ϕ-meson $\sqrt{S_{N N}}$-dependent ρ_{00}

- Significant ϕ-meson global spin alignment confirmed in 14.6 and 19.6 GeV midcentral $\mathrm{Au}+\mathrm{Au}$ collisions from BES-II.
- Significant for both orders of EP.
- Consistent with BES-I at 19.6 GeV , but with higher precision.

STAR, Nature 614 (2023) 7947.
Sheng et al., PRD 101 (2020) 9, 096005.
Sheng et al., PRD 102 (2020) 5, 056013.

ϕ-meson p_{T}-dependent ρ_{00}

- ρ_{00} obtained with $1^{\text {st }}$ and $2^{\text {nd }}$ order event planes are consistent.
ϕ-meson centrality-dependent ρ_{00}

- Similar centrality dependence for ρ_{00} with respect to $1^{\text {st }}$ and $2^{\text {nd }}$ order EP.
- Theory predictions \rightarrow ongoing work.

ϕ-meson rapidity-dependent ρ_{00}

Summary

- $\phi: \rho_{00}>1 / 3$ for mid-central $\mathrm{Au}+\mathrm{Au}$ collisions at energies $\leq 62 \mathrm{GeV}$ BES-I.
- Currently explained by vector meson strong force field. ${ }^{(1)}$
- New differential results for ϕ-meson ρ_{00} from BES-II 14.6 and $19.6 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$.
- First measurement of the rapidity dependence shows a strong increasing trend towards larger rapidity that is consistent with theory prediction.

Further work:

- Increase $|\eta|$ coverage available from STAR detector upgrades.
- Lower energy data sets available.
[1] Sheng et al., Phys. Rev. D 102, 056013 (2020).

Ongoing work

THANK YOU FOR YOUR ATTENTION

Office of Science

BACKUP

Event Planes

- Reaction plane (RP), Ψ_{r} : the azimuthal angle of the impact parameter, b, in the lab frame estimated using spectators at far forward rapidity.
- Event plane (EP), $\Psi_{n}: \mathrm{n}^{\text {th }}$ harmonic of the anisotropic flow distribution. ${ }^{(1)}$
- ρ_{00} calculated with respect to $1^{\text {st }}$ and $2^{\text {nd }}$ order EP should be consistent.

$$
\begin{gathered}
Q_{n} \cos \left(n \Psi_{n}\right)=\sum_{i} w_{i} \cos \left(n \varphi_{i}\right) ; \quad Q_{n} \sin \left(n \Psi_{n}\right)=\sum_{i} w_{i} \sin \left(n \varphi_{i}\right) \\
\Psi_{n}=\left(\tan ^{-1} \frac{\sum_{i} w_{i} \sin \left(n \varphi_{i}\right)}{\sum_{i} w_{i} \cos \left(n \varphi_{i}\right)}\right) / n
\end{gathered}
$$

n : harmonic order in anisotropic flow distribution
i : $i^{\text {th }}$ particle in event
Q_{n} : flow vector
φ_{i} : angle of particle trajectory in lab frame
w_{i} : weight (determined by transverse momentum, p_{T})

