#### Differential Measurements of $\phi$ -meson Global Spin Alignment in Au+Au Collisions at STAR

#### Gavin Wilks for the STAR Collaboration (gwilks3@uic.edu) University of Illinois at Chicago







This work is supported in part by the DOE Office of Science



## Outline

- Introduction to global spin alignment
- Motivation for this analysis
- Analysis method
- Results for  $\phi$ -meson  $\rho_{00}$  from Au+Au collisions in STAR BES-II
- Summary

# Introduction to Spin Alignment

- Non-central heavy-ion collisions generate large orbital angular momentum (OAM).
- This OAM can preferentially align a particle's spin projection along the spin quantization axis through spin-orbit coupling<sup>(1)</sup>.



STAR Collaboration, Nature 614 (2023) 7947.

STAR

# plane) in parent's rest frame. $\phi \text{ meson}$

 $\rho_{00}$  is found by fitting the parent particle's yield (*N*) vs cos( $\theta^*$ ).<sup>(1)</sup>

 $\rho_{00}$ : 00<sup>th</sup> element of the spin density matrix.

 $\theta^*$ : angle between K<sup>+</sup> daughter momentum

and polarization axis (normal of reaction

$$\frac{dN}{d\cos\theta^*} = N_0 \times \left[ (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

 $\rho_{00} \neq 1/3$  indicates spin alignment.



[1] Schilling et al., Nucl. Phys.B18, 332 (1970).

# Introduction to Spin Alignment





# $\rho_{00}$ from BES-I



[1] STAR Collaboration, Nature 614 (2023) 7947.



- Significant positive global spin alignment ( $\rho_{00}$ >1/3) for  $\phi$ -meson was measured for the first time in mid-central collisions.<sup>(1)</sup>
- $\rho_{00} \sim 1/3$  for K<sup>\*0</sup> in mid-central collisions.
  - Mean lifetime of  $K^{*0}$  is ~10x smaller than  $\phi$  (different in-medium interactions).
  - If global spin alignment is driven by fluctuations in vector meson fields, fluctuations for *d* and  $\bar{s}$  are expected to be weaker than for *s* and  $\bar{s}$ .

# Potential Contributions to $\phi$ -meson $\rho_{00}$



| Physics Mechanism                                                                         | ρ     | 00    | Significant positive global spin alignment                                                                                                                        |  |
|-------------------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fragmentation of polarized quarks <sup>(1)</sup>                                          | ≶ 1/3 | ~10-5 | $(\rho_{00}>1/3)$ for $\phi$ -meson was measured at midcentral collisions from BES-I. <sup>(8)</sup>                                                              |  |
| Quark coalescence<br>Magnetic components of EM and<br>vorticity fields <sup>(1,2,3)</sup> | < 1/3 | ~10-5 | • Cannot be explained by conventional polarization mechanisms.                                                                                                    |  |
| Electric part of vorticity tensor <sup>(2)</sup>                                          | < 1/3 | ~10-4 | • Supported by a theoretical model                                                                                                                                |  |
| Electric field <sup>(2)</sup>                                                             | > 1/3 | ~10-5 | • Couples to $s$ and $\overline{s}$ quarks.                                                                                                                       |  |
| Helicity polarization <sup>(4)</sup>                                                      | < 1/3 |       |                                                                                                                                                                   |  |
| Locally fluctuating axial charge currents <sup>(5)</sup>                                  | < 1/3 |       | <ul> <li>[1] Liang et al., PLB 629, 20–26 (2005).</li> <li>[2] Sheng et al., PRD 101, 096005 (2020).</li> <li>[3] Yang et al., PRC 97, 034917 (2018).</li> </ul>  |  |
| Local vorticity loop +<br>coalescence <sup>(6)</sup>                                      | < 1/3 |       | <ul> <li>[4] Gao et al., PRD 104, 076016 (2021).</li> <li>[5] Müller et al., PRD 105, L011901 (2022).</li> <li>[6] Xia et al., PLB 817, 136325 (2021).</li> </ul> |  |
| Vector meson strong force field <sup>(2,7)</sup>                                          | > 1/3 |       | <ul><li>[7] Sheng et al., PRD 102, 056013 (2020).</li><li>[8] STAR, Nature 614 (2023) 7947.</li></ul>                                                             |  |

# Potential Contributions to $\phi$ -meson $\rho_{00}$

| <b>Physics Mechanism</b>                                                                  | ρ <sub>00</sub> |       |
|-------------------------------------------------------------------------------------------|-----------------|-------|
| Fragmentation of polarized quarks <sup>(1)</sup>                                          | ≶ 1/3           | ~10-5 |
| Quark coalescence<br>Magnetic components of EM and<br>vorticity fields <sup>(1,2,3)</sup> | < 1/3           | ~10-5 |
| Electric part of vorticity tensor <sup>(2)</sup>                                          | < 1/3           | ~10-4 |
| Electric field <sup>(2)</sup>                                                             | > 1/3           | ~10-5 |
| Helicity polarization <sup>(4)</sup>                                                      | < 1/3           |       |
| Locally fluctuating axial charge currents <sup>(5)</sup>                                  | < 1/3           |       |
| Local vorticity loop +<br>coalescence <sup>(6)</sup>                                      | < 1/3           |       |
| Vector meson strong force field <sup>(2,7)</sup>                                          | > 1/3           |       |

- $\phi$ -meson mean field (if exists), can polarize  $s\bar{s} \rightarrow$  global spin alignment.
- Electric and magnetic components of  $\phi$  field from field potential,  $\phi^{\mu}$ .

$$\begin{split} F^{\mu\nu}_{\phi} &= \partial^{\mu}\phi^{\nu} - \partial^{\nu}\phi^{\mu} \\ \phi^{\mu} &\approx -(g_{\phi}/m_{\phi}^2)J^{\mu}_s \\ J^{\mu}_s(t,\mathbf{x}) &= (\rho_s,\mathbf{J}_s) = (\rho_s,j^x_s,j^y_s,j^z_s) \end{split}$$

Strangeness Conservation Zero Net Strangeness $\partial_{\mu}J^{\mu}_{s} = 0 \qquad \int d^{3}\mathbf{x}\rho_{s}(t,\mathbf{x}) = 0$ 

• Strangeness current in heavy-ion collisions could occur from nonequivalent PDFs,  $s(x_B) \neq \overline{s}(x_B)$ .

# Leading theory prediction for $\phi$ -meson $\rho_{00}$







• BES-I results suggest non-monotonic behavior.

Fit to  $\phi$ -meson data is described by:  $\rho_{00}(\sqrt{s_{NN}}) = \frac{1}{3} + \frac{1}{27m_s^2[T_{eff}(\sqrt{s_{NN}})]^2} G_s^{(y)}$ With free parameter  $G_s^{(y)}$ :  $G_s^{(y)} = g_{\phi} \left[ 3\langle B_{\phi,y}^2 \rangle + \frac{\langle \mathbf{p}^2 \rangle_{\phi}}{m_s^2} \langle E_{\phi,y}^2 \rangle - \frac{3}{2} \langle B_{\phi,x}^2 + B_{\phi,z}^2 \rangle - \frac{\langle \mathbf{p}^2 \rangle_{\phi}}{2m_s^2} \langle E_{\phi,x}^2 + E_{\phi,z}^2 \rangle \right]$ 

 $T_{eff}$ : effective temperature of quark gluon plasma (QGP) fireball  $g_{\phi}$ :  $\phi$ -meson field coupling constant

 $E_{\phi,i}(B_{\phi,i})$ : i<sup>th</sup> component of electric (magnetic) parts of  $\phi$ -meson field  $m_s$ : strange quark mass

p: strange quark momentum in  $\phi$  rest frame

(): average over the spacetime volume of polarization in QGP fireball

Gavin Wilks SQM2024, June 5, 2024

## STAR BES-II



| $\sqrt{s_{NN}}$ (GeV) | BES-I<br>(x10 <sup>6</sup> events) | BES-II<br>(x10 <sup>6</sup> events) |  |
|-----------------------|------------------------------------|-------------------------------------|--|
| 19.6                  | 36(1)                              | 478                                 |  |
| 14.6                  | 18                                 | 324                                 |  |
| 11.5                  | 12(1)                              | 235                                 |  |
| 9.2                   |                                    | 162                                 |  |
| 7.7                   | 4                                  | 101                                 |  |

[1] STAR Collaboration, Nature 614 (2023) 7947.



- Significantly increased sample sizes available from BES-II for identical energies.
- Improvements to the STAR detector.
  - Increased event plane resolution.
  - Tracking improvements.
- Many new collision energies available.
  - Clarify behavior of  $\rho_{00}$  for lower collision energies and higher baryon densities.
- High precision differential measurements of  $\phi$ -meson  $\rho_{00.}$ 
  - Provide guidance for future theoretical developments.

# The STAR Detector





Gavin Wilks SQM2024, June 5, 2024

Full azimuthal coverage TPC :  $|\eta| < 1$ iTPC<sup>II</sup>:  $|\eta| < 1.5$ 

> tracking, centrality, particle identification, and 2<sup>nd</sup> order event plane reconstruction

TOF :  $|\eta| < 0.9$ eTOF<sup>II</sup>: -1.1 <  $\eta$  < -1.6

particle identification

BBC :  $3.9 < |\eta| < 5$ EPD<sup>II</sup>:  $2.1 < |\eta| < 5.1$ 

 $1^{st}$  order event plane reconstruction  $\sim 2x$  greater EP resolution with EPD

Used in this analysis <sup>II</sup>Upgrades to STAR since BES-I 10

 $\rho_{00}$  Extraction





- Event-mixing is used to subtract background and extract yields from histogram integration in seven  $|\cos\theta^*|$  bins.
- Yields vs.  $|\cos\theta^*|$  are corrected for the geometric acceptance, tracking, and PID related efficiencies.
- $\rho_{00}^{obs}$  is extracted from a fit to the corrected yields vs.  $|\cos\theta^*|^{(1)}$ :  $\frac{dN}{d\cos\theta^*} = N_0 \times \left[ \left(1 \rho_{00}^{obs}\right) + \left(3\rho_{00}^{obs} 1\right)\cos^2\theta^* \right]$
- Calculate  $\rho_{00}$  from  $\rho_{00}^{obs}$  accounting for EP resolution<sup>(2)</sup>:  $\rho_{00} = \frac{1}{3} + \frac{4}{1+3R} \left( \rho_{00}^{obs} \frac{1}{3} \right)$ ; R = Event plane resolution.

# $\phi$ -meson $\sqrt{s_{NN}}$ -dependent $\rho_{00}$



- Significant φ-meson global spin alignment confirmed in 14.6 and 19.6 GeV midcentral Au+Au collisions from BES-II.
- Significant for both orders of EP.
- Consistent with BES-I at 19.6 GeV, but with higher precision.

STAR, Nature 614 (2023) 7947. Sheng et al., PRD 101 (2020) 9, 096005. Sheng et al., PRD 102 (2020) 5, 056013.

#### $\phi$ -meson p<sub>T</sub>-dependent $\rho_{00}$



•  $\rho_{00}$  obtained with 1<sup>st</sup> and 2<sup>nd</sup> order event planes are consistent.

STAR

#### $\phi$ -meson centrality-dependent $\rho_{00}$



- Similar centrality dependence for  $\rho_{00}$  with respect to 1<sup>st</sup> and 2<sup>nd</sup> order EP.
- Theory predictions  $\rightarrow$  ongoing work.

STAR

#### $\phi$ -meson rapidity-dependent $\rho_{00}$



## Summary

- $\phi: \rho_{00} > 1/3$  for mid-central Au+Au collisions at energies  $\leq 62$  GeV BES-I.
  - Currently explained by vector meson strong force field. $^{(1)}$
- New differential results for  $\phi$ -meson  $\rho_{00}$  from BES-II 14.6 and 19.6 GeV Au+Au.
  - First measurement of the rapidity dependence shows a strong increasing trend towards larger rapidity that is consistent with theory prediction.

Further work:

- Increase  $|\eta|$  coverage available from STAR detector upgrades.
- Lower energy data sets available.

[1] Sheng et al., Phys. Rev. D 102, 056013 (2020).



## THANK YOU FOR YOUR ATTENTION





This work is supported in part by the DOE Office of Science

#### BACKUP







STAR Collaboration, Nature 614 (2023) 7947.

Gavin Wilks SQM2024, June 5, 2024

- Reaction plane (RP),  $\Psi_r$ : the azimuthal angle of the impact parameter, b, in the lab frame estimated using spectators at far forward rapidity.
- Event plane (EP),  $\Psi_n$ : n<sup>th</sup> harmonic of the anisotropic flow distribution.<sup>(1)</sup>
- $\rho_{00}$  calculated with respect to 1<sup>st</sup> and 2<sup>nd</sup> order EP should be consistent.

$$Q_n \cos(n\Psi_n) = \sum_i w_i \cos(n\varphi_i); \quad Q_n \sin(n\Psi_n) = \sum_i w_i \sin(n\varphi_i)$$
$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\varphi_i)}{\sum_i w_i \cos(n\varphi_i)}\right)/n$$

*n*: harmonic order in anisotropic flow distribution *i*: i<sup>th</sup> particle in event  $Q_n$ : flow vector  $\varphi_i$ : angle of particle trajectory in lab frame  $w_i$ : weight (determined by transverse momentum, p<sub>T</sub>)