A Realistic Coalescence Model for Deuteron Production

Maximilian Mahlein, Laura Fabbietti, Bhawani Singh, Chiara Pinto Based on: arXiv:2404.03352 Technical University Munich

Maximilian Mahlein (TUM)

Strangeness in Quark Matter

SQM 24 Strasbourg

Cosmic Rays

Antinuclei in Cosmic Rays

ALICE Collaboration, Nat. Phys. 19, 61–71 (2023)

• Antinuclei could be a probe for indirect Dark Matter searches

Cosmic Rays

Antinuclei in Cosmic Rays

ALICE Collaboration, Nat. Phys. 19, 61–71 (2023)

- Antinuclei could be a probe for indirect Dark Matter searches
- However: Astrophysical background from cosmic rays expected

Cosmic Rays Antinuclei in Cosmic Rays

- Antinuclei could be a probe for indirect Dark Matter searches
- However: Astrophysical background from cosmic rays expected
- High Signal/Noise ratio (~10²-10⁴) at low E_{kin} expected by many models!

SQM 24 Strasbourg

Modelling (Anti)nuclei Production The Coalescence Model

• Nucleons bind after freeze-out if they are close in phase-space

Maximilian Mahlein (TUM)

Coalescence Results EPOS

Deuteron spectra

• Corrections to Protons, Source, Multiplicity

- Wavefunctions: Gaussian, Hulthén and Argonne v₁₈
- v_{18} reproduces data to ~10%

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Coalescence Results EPOS

Deuteron spectra

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804 🔅

- Corrections to Protons, Source, Multiplicity
- Wavefunctions: Gaussian, Hulthén and Argonne v₁₈
- v_{18} reproduces data to ~10%

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Maximilian Mahlein (TUM)

Coalescence Results EPOS

Deuteron spectra

- Corrections to Protons, Source, Multiplicity
- Wavefunctions: Gaussian, Hulthén and Argonne v₁₈
- v_{18} reproduces data to ~10%

Most advanced coalescence model with realistic wave function!

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

The ToMCCA Model A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

The ToMCCA Model

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

The ToMCCA Model

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

The ToMCCA Model

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Deuteron Spectra ToMCCA Model in HM pp Collisions

- Using ToMCCA for 13 TeV HM collisions ((dN_{ch}/dη)_{|η|<0.8}~31) we can reproduce measured spectra
- No free parameters!

04.06.2024 16

Deuteron Spectra ToMCCA Model in HM pp Collisions

- Using ToMCCA for 13 TeV HM collisions ((dN_{ch}/dη)_{|η|<0.8}~31) we can reproduce measured spectra
- No free parameters!

Cosmic Rays Production energy of antinuclei

Maximilian Mahlein (TUM)

04.06.2024

18

 Antideuteron production predominantly for protons of E_{kin}~200-500 GeV (√s ~ **19-30 GeV** for p-H)

04.06.2024

19

 Antideuteron production predominantly for protons of E_{kin}~200-500 GeV (√s ~ **19-30 GeV** for p-H)

 Extrapolation to lower energies via event multiplicity

SQM 24 Strasbourg

• Antideuteron production predominantly for protons of $E_{kin} \sim 200-500 \text{ GeV}$ ($\sqrt{s} \sim 19-30 \text{ GeV}$ for p-H)

• Extrapolation to lower energies via event multiplicity

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

 Antideuteron production predominantly for protons of E_{kin}~200-500 GeV (√s ~ **19-30 GeV** for p-H)

 Extrapolation to lower energies via event multiplicity

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

04.06.2024

22

• Antideuteron production predominantly for protons of $E_{kin} \sim 200-500 \text{ GeV}$ ($\sqrt{s} \sim 19-30 \text{ GeV}$ for p-H)

• Extrapolation to lower energies via event multiplicity

high-multiplicity collisions

SQM 24 Strasbourg

Extrapolating the Source Using ToMCCA as a fitting tool

Maximilian Mahlein (TUM)

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $\ensuremath{\mathsf{m_T}}$ to measured data
- Cross check at different energies

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $\ensuremath{m_{\text{T}}}$ to measured data
- Cross check at different energies

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Extrapolating the Source Using ToMCCA as a fitting tool

Maximilian Mahlein (TUM)

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $\ensuremath{\mathsf{m_T}}$ to measured data
- Cross check at different energies

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $\ensuremath{\mathsf{m_T}}$ to measured data
- Cross check at different energies

SQM 24 Strasbourg

Deuteron results

Minimum bias 7 TeV

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies
- Minimum Bias works well

Deuteron results d/p ratio

Maximilian Mahlein (TUM)

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies
- Minimum Bias works well
- d/p ratio reproduces data well, tension to previous predictions at high multiplicity

Deuteron results B₂ parameter

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies
- Minimum Bias works well
- d/p ratio reproduces data well, tension to previous predictions at high multiplicity
- B₂ also reproduced well

$$B_A(p_{\mathrm{T}}^p) = E_A \frac{d^3 N_{\mathrm{A}}}{d p_{\mathrm{A}}^3} \Big/ \left(E_{\mathrm{p}} \frac{d^3 N_{\mathrm{p}}}{d p_{\mathrm{p}}^3} \right)^{\mathrm{A}}$$

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Extension to A=3

Maximilian Mahlein (TUM)

04.06.2024

31

Add 3rd particle to basic formalism

SQM 24 Strasbourg

$$\begin{aligned} \frac{\mathrm{d}N_{\mathrm{He}}}{\mathrm{d}^{3}P} &= S_{\mathrm{He}} \int \mathrm{d}^{3}x_{1} \int \mathrm{d}^{3}x_{2} \int \mathrm{d}^{3}x_{3} \int \mathrm{d}^{3}x_{1}' \int \mathrm{d}^{3}x_{2}' \int \mathrm{d}^{3}x_{3}' \\ &\times \Psi_{\mathrm{He}}^{*} \left(\vec{x_{1}}', \vec{x_{2}}', x_{3}'\right) \Psi_{\mathrm{He}} \left(\vec{x_{1}}, \vec{x_{2}}, \vec{x_{3}}\right) \langle \Psi_{3}^{\dagger}(\vec{x}_{3}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1}')\Psi_{2}(\vec{x}_{2})\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{2}')\Psi_{2}^{\dagger}$$

Similarly the probability can be expressed as

$$\mathcal{P}(k_1, q_1, \sigma, b) = \frac{S_{\text{He}}}{(2\pi)^3 2^9 \sigma^6} \int d^3 r_1 d^3 r_2 \mathcal{D}(\vec{q}_1, \vec{k}_1, \vec{r}_1, \vec{r}_2) e^{-\frac{r_1^2 + r_2^2}{4\sigma^2}}$$

Extension to A=3

Extension to A=3 coalescence

- Use 2-body source size
 - Assign every pair a distance
 - Geometric mean of distance for coalescence probability
- For now only Gaussian wave function:
 - Yield ~50% *lower* than data
 - \circ Shape at large p_T deviates

$$\mathcal{P}(k,q,\sigma) = \frac{S \ 64 \ b^6}{(b^2 + 2\sigma^2)^3} \exp\left[-b^2(k^2 + q^2)\right]$$

04.06.2024

32

Extension to A=3 Hypertriton

Maximilian Mahlein (TUM)

• Congleton¹ wavefunction

$$\Psi_{\Lambda}(q) = N \frac{exp[-(q/\Lambda)^2]}{q^2 + \alpha^2}$$

- Assumes factorization of Hypertriton wavefunction into deuteron+Λ
- Scattering parameters retuned to latest Hypertriton formfactor calculations²

¹ J G Congleton 1992 J. Phys. G: Nucl. Part. Phys. 18 339
² F. Bellini et al.: Phys.Rev.C 103, 1 (2021)

Extension to A=3 Hypertriton

- S₃ observable is expected to be very sensitive to production mechanism
- Using Gaussian for LH3 and He-3 gives comparable results to Sun et al.
- Using Congleton for LH3 overestimates S₃

Extension to A=3 Hypertriton

- S₃ observable is expected to be very sensitive to production mechanism
- Using Gaussian for LH3 and He-3 gives comparable results to Sun et al.
- Using Congleton for LH3 overestimates S₃
- He-3 yield is underestimated →Scale by 0.5

Extension to A=3 Hypertriton

- S₃ observable is expected to be very sensitive to production mechanism
- Using Gaussian for LH3 and He-3 gives comparable results to Sun et al.
- Using Congleton for LH3 overestimates S₃
- He-3 yield is underestimated →Scale by 0.5
- ³_{\[\]}H/³He Ratio shows increasing behaviour
- However: ³He does not reproduce shape of measured spectra
- Flat behaviour when using measured ³He spectra

Maximilian Mahlein (TUM)
Conclusion

Deuterons:

- Coalescence model reproduces data with no free parameters
- Realistic wavefunction required
- ToMCCA allows for an extension to arbitrary multiplicities
- A=3 Coalescence
 - Successful extension of the model to A=3
 - Nuclei and *Hyper*nuclei
 - Realistic wavefunctions required

ToMCCA is available under: https://github.com/horstma/tomcca-public

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

04.06.2024 37

Conclusion

ses data

Eliz

2.0

Deuterons:

- Coalescence mod with no free parag ENS
- Realistic wavefu
- ToMCCA allow arbitrary mult
- A=3 Coalescenc
 - Successfu A=3
 - Nuclei and Hyperns
 - Realistic wavefunctions

ToMCCA is available under: https://github.com/horstma/tomcca-public

 $\langle dN_{ch}/d\eta \rangle_{|\eta| < 0.5}$

ToMCCA Gaus./Gaus. ALICE pp 13 TeV HM

LICE pp 13 TeV MB ALICE pPb 5.02 TeV 0-40%

цар. 1.0 <u>le-3</u> ______р

0.8

0.6

0.4

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

0.0

10¹

04.06.2024 38

2.5

3.0

p_⊤ [GeV/c]

BACKUP

SQM 24 Strasbourg

Conclusion Deuteron production

04.06.2024

40

- Understanding nuclei formation on earth can open a window to **indirect dark matter** searches
- Wigner function formalism can predict nuclei yields with no free parameters
- ToMCCA allows us to extrapolate to arbitrary multiplicities

SQM 24 Strasbourg

Coalescence Results EPOS

Angular correlations

- Δφ of pp (pn) pairs
- Not reproduced by EPOS or Pythia
- No real control over these behaviours in general purpose event generators

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

Coalescence Results EPOS

Angular correlations

- $\Delta \phi$ of pp (pn) pairs
- Not reproduced by EPOS or Pythia
- No real control over these behaviours in general purpose event generators

Introducing:

Toy Monte Carlo Coalescence Afterburner arXiv:2404.03352 SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Comparison to previous predictions

Important observable in accelerator measurements: B_A

$$B_A(p_{\rm T}^p) = E_A \frac{d^3 N_{\rm A}}{dp_{\rm A}^3} \bigg/ \left(E_{\rm p} \frac{d^3 N_{\rm p}}{dp_{\rm p}^3} \right)^A$$

• Theoretical prediction [1]

$$B_2(\vec{p}) \approx \frac{3}{2m} \int d^3q D(\vec{q}) e^{-R^2(p_{\rm T}) q^2}$$
$$D(\vec{q}) = \int d^3r |\phi_d(\vec{r})|^2 e^{-i\vec{q}\cdot\vec{r}}$$

- This neglects momentum difference between
 Nucleons
- approximate to 10% in Pb–Pb, factor 2 in pp

[1] Blum, Takimoto, PRC 99 (2019) 044913

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Comparison to previous predictions

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Cosmic Rays Antinuclei in Cosmic Rays?

- AMS-02 @ ISS has measured 9 antihelium candidates
- Not yet published
- What could be the origin of these **antinuclei**?

Pauolo Zuccon for AMS-02 Collaboration at MIAPP workshop 2022

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Next generation coalescence Model

Maximilian Mahlein (TUM)

Fitting the Source

Fitting Procedure:

SQM 24 Strasbourg

- Run ToMCCA with a fixed source size (e.g. 1.8 fm, flat in m_{T})
- For the resulting deuteron spectra calculate the χ^2 for each bin and save it
- Reduce source size
- Repeat until source size is 0

New Wiger functions/Probabilities (

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Argonne D-State probability

D-State probability is $6\% \rightarrow Maximum \sim 11\%$ effect

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Recap: ToMCCA Inputs

- ToMCCA is a Toy Monte Carlo →it requires everything as an *input*:
 - Momentum distribution → Fully parameterized
 - *Multiplicity* → Poissonian/Event Generator
 - Angular distribution → From Measurement
 - Source Size → ALICE Measurement

 $\frac{d^{2}N}{dydp_{T}} = \frac{dN}{dy} \frac{p_{T}(n-1)(n-2)}{nC[nC+m_{n}(n-2)]} \left(1 + \frac{m_{T}-m_{p}}{nC}\right)^{-n}$

SQM 24 Strasbourg

Event Loop:

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Event Loop:

Get number of charged particles Get proton yield Get neutron yield ↔ Loop over all protons

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Event Loop:

SQM 24 Strasbourg

- Get number of charged particles Get proton yield
- Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - Draw p_{T} from parameterization
 - Draw flat rapidity y=[-0.5,0.5]
 - Draw random $\phi=[0,2\pi)$

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- O Loop over all protons
 Get 3D momentum of proton
 - Loop over all neutrons

Event Loop:

- Get number of charged particles Get proton yield
- Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - O Loop over all neutrons
 - Get 3D momentum of neutron
 - Draw p_{T} from parameterization
 - Draw flat rapidity y=[-0.5, 0.5]
 - Draw random $\Delta \phi$ from ALICE measurement

Event Loop:

- Get number of charged particles Get proton yield
- Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - O Loop over all neutrons
 - Get 3D momentum of neutron
 - Draw p_{T} from parameterization
 - Draw flat rapidity y=[-0.5, 0.5]
 - Draw random $\Delta \phi$ from ALICE measurement

SQM 24 Strasbourg

Event Loop:

- Get number of charged particles Get proton yield
- Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - O Loop over all neutrons
 - Get 3D momentum of neutron
 - Draw p_{T} from parameterization
 - Draw flat rapidity y=[-0.5, 0.5]
 - Draw random $\Delta \phi$ from ALICE measurement

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

04.06.2024 59

Event Loop:

- Get number of charged particles Get proton yield
- Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - O Loop over all neutrons
 - Get 3D momentum of neutron
 - Draw p_{T} from parameterization
 - Draw flat rapidity y=[-0.5, 0.5]
 - Draw random $\Delta \phi$ from ALICE measurement

04.06.2024

60

Using a toy MC for Coalescence

Maximilian Mahlein (TUM)

Basics of ToMCCA

Event Loop:

SQM 24 Strasbourg

- Get number of charged particles Get proton yield
- Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - ↔ Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size

p(q, a)

Event Loop:

- Get number of charged particles Get proton yield Get neutron yield
- O Loop over all protons
 - Get 3D momentum of proton
 - ↔ Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition

Maximilian Mahlein (TUM)

Event Loop:

SQM 24 Strasbourg

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Cot 2D momentum of pr
 - Get 3D momentum of proton
 - $\ensuremath{\odot}$ Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - \odot Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - make deuteron, number of neutrons -1
 try next neutron

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - \odot Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - make deuteron, number of neutrons -1
 try next neutron

Maximilian Mahlein (TUM)

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - \odot Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - Make deuteron, number of neutrons -1 X try next neutron

Maximilian Mahlein (TUM)

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - \odot Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - make deuteron, number of neutrons -1
 try next neutron

SQM 24 Strasbourg

Maximilian Mahlein (TUM)

Next Event.

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - Make deuteron, number of neutrons -1

Verifying the Model Comparison to ALICE deuteron Spectra

Comparison of ToMCCA and EPOS to ALICE deuteron spectra 13 TeV pp with a HM trigger

- EPOS reproduces spectra within ~20%
- EPOS does not reproduce the Δφ measurement by ALICE
- ToMCCA with string fragmentation and quark recombination mode reproduces the measurement perfectly
- ToMCCA with correlated emission overshoots data at lower pT
 - Model reproduces the data, with no free parameters!

Deuteron number fluctuations Introduction

04.06.2024

- To shed a light on the nuclei production mechanism measure more differential observables and test them against the common models (CSM, coalescence)
- Rationale:
 - a. In the CSM deuterons and protons are produced independently ("poissonian")
 - b. In the coalescence model a deuteron is formed from two independent nucleons
 →combination of two poissonian distributions does not yield a poissonian
 distribution
- The observables:
 - a. $\kappa_1 = \langle n \rangle$ the mean number of particles per event b. $\kappa_2 = \langle (n - \langle n \rangle)^2 \rangle$ the variance of the number distribution
 - c. $\rho_{pd} = \langle (n_p \langle n_p \rangle) (n_d \langle n_d \rangle) \overline{\gamma \sqrt{\kappa_{2p}} \kappa_{2d}}$ The pearson correlation coefficient

SQM 24 Strasbourg

Deuteron number fluctuations

Results κ_2/κ_1

κ_2/κ_1 : Data is consistent with 1

- This implies a poissonian fluctuation of the deuteron number
- This is expected in the *CSM* since protons and deuterons are emitted independently (barring canonical suppression)
- *Coalescence* model shows a (positive) deviation of *O*(1%) indicating a deviation from the poissonian baseline
- All 3 versions of ToMCCA reproduce the $\kappa_2^{\prime}/\kappa_1^{}=1$

13 TeV HM 1 (Mult ~36)

 EPOS reproduces data with in large uncertainty We can only work with pp

SQM 24 Strasbourg

Data translated from Centrality to mean multiplicity (using https://twiki.cern.ch/twiki/bin/viewauth/ALICE/ReferenceMult)

Deuteron number fluctuations Results ρ_{nd}

- $\rho_{pd}: Data shows a negative pearson coefficient O(0.1\%)^{Data translated from Centrality to mean multiplicity (using https://twiki.cern.ch/twiki/bin/viewauth/ALICE/ReferenceMult)}$
 - This implies that deuteron and proton numbers are negatively correlated
 - In the *CSM* this can be achieved by including canonical suppression (Baryon number conservation)
 - In the *coalescence* model there are two effects at play:
 - a. Deuterons "take away" protons in the formation process $(d\uparrow \rightarrow p\downarrow)$
 - b. Non-linear formation relation between protons and deuterons $(p\uparrow \rightarrow d\uparrow\uparrow)$
 - String fragmentation and Quark recombination come close to data
 - Correlated emission and EPOS too high

SQM 24 Strasbourg

Maximilian Mahlein (TUM)