

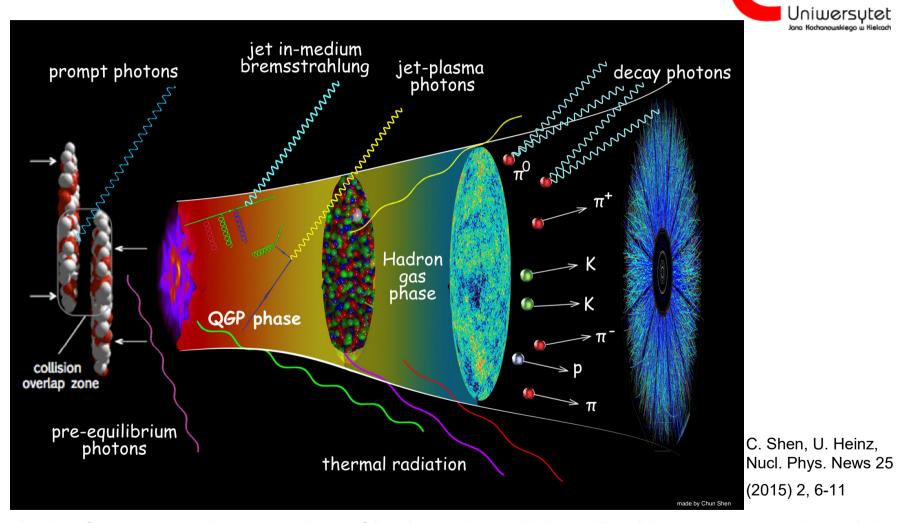
Large isospin symmetry breaking in kaon production at high energies

Francesco Giacosa

Jan Kochanowski U Kielce – Goethe U Frankfurt

In collaboration with
Wojciech Brylinski, Marek Gazdzicki,
Mark Gorenstein, Roman Poberezhnyuk,
Subhasis Samanta, Herbert Stroebele
+NA61/SHINE feedback

SQM2024


The 21st International Conference on Strangeness in Quark Matter 3-7/6/2024, Strassbourg, France

Outline

- 1. Heavy-Ion collisions: brief recall
- 2. Isospin: brief recall
- 3. Kaon productions
- 4. Theory vs experiment
- 5. Conclusions

Heavy-ion collisions

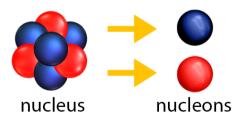
At the freeze-out, the emission of hadrons is well described by e.g. thermal models.

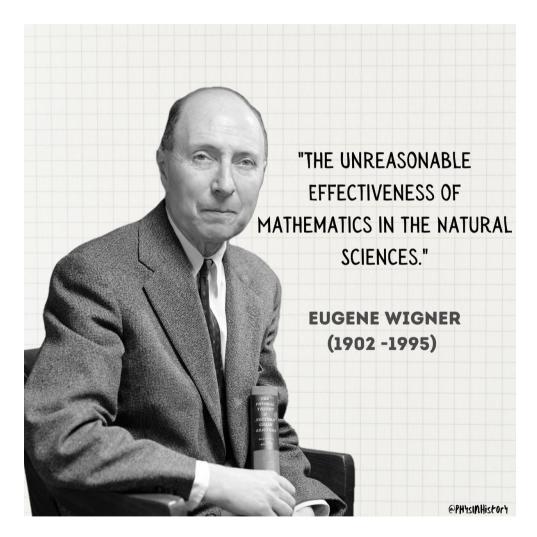
- Here, we concentrate on kaon production, especially on an unexpected large violation of isospin in charged to neutral kaon ratio
- Brylinski et al., Large isospin symmetry breaking in kaon production at high energies," [arXiv:2312.07176 [nucl-th]].
- Adhikary et al. [NA61/SHINE], Excess of Charged Over Neutral K Meson Production in High-Energy Collisions of Atomic Nuclei, [arXiv:2312.06572 [nucl-ex]]

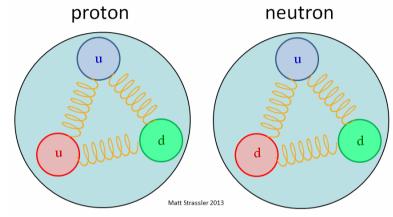
See Talk of T. Susa, Measurement of charged and neutral kaons in Ar+Sc collisions at NA61/SHINE experiment

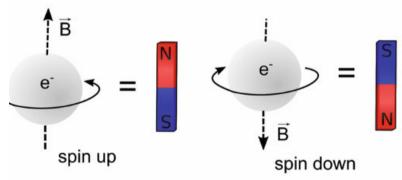
We. 12:00, Light-flavours and Strangeness

...as well as to a compilation of other experiments


Heisenberg (1932): the nucleon


A nucleon is either a proton or a neutron as a component of an atomic nucleus



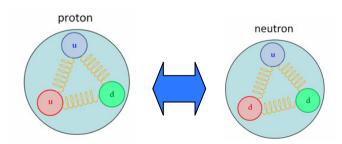

Proton and neutron merge into the nucleon Masses very similar.

Wigner (1932): isotopic spin, thus isospin

Nucleon doublet: I=1/2

$$\left(\begin{array}{c} p \\ n \end{array}\right) \to \hat{O}\left(\begin{array}{c} p \\ n \end{array}\right)$$

$$\hat{O}$$
 is a 2×2 unitary matrix.


$$\hat{O} = e^{i\theta_i \sigma_i/2}$$

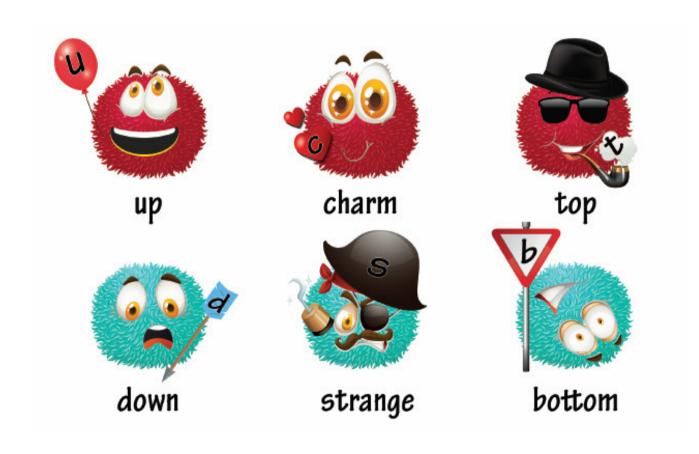
A specific isospin transformation is the so-called charge transformation:

$$\hat{C} = e^{i\pi\sigma_2/2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Then under \hat{C} : $p \iff n$

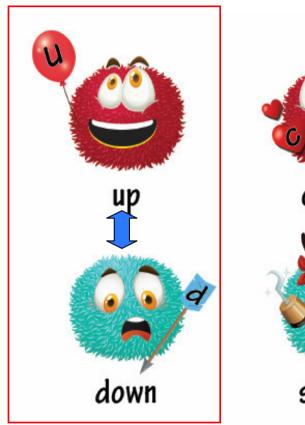
$$p \iff n$$

Kaons form isospin doublets, just as the nucleon


$$\left(\begin{array}{c}p\\n\end{array}\right) \left(\begin{array}{c}K^+\\K^0\end{array}\right) \left(\begin{array}{c}-\bar{K}^0\\K^-\end{array}\right) \dots$$

under \hat{C} :

$$\begin{array}{ccc}
p & \iff & n \\
K^+ & \iff & K^0 \\
\bar{K}^0 & \iff & K^-
\end{array}$$


Quarks and QCD

Quarks and QCD, isospin:

In terms of quarks:
$$\begin{pmatrix} u \\ d \end{pmatrix} \rightarrow \hat{O} \begin{pmatrix} u \\ d \end{pmatrix}$$

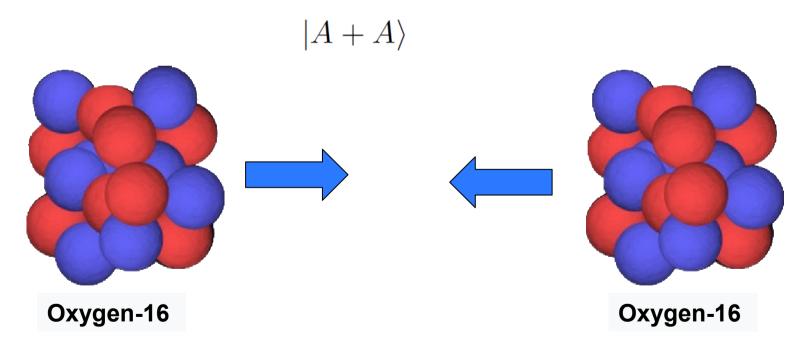
Then under \hat{c} : $u \Longleftrightarrow d$

Isospin is an approximate symmetry of QCD

- Mesonic multiplets (nucleon doublet, pion triplet, kaon doublets).
- Reactions: if an initial state has a certain (I,Iz), then the final state is also such. Indeed, pion-pion, pion-nucleon and nucleon-nulceon scattering conserve isospin (to a good level of accuracy).

Example: (I=Iz=1)

$$p+p \to \Lambda + K^+ + p$$


- Isospin symmetry is good, but not exact. Masses of u and d not equal (explicit symmetry breaking).
- Isospin transformations are a subset of flavor transformations.

Nucleus-nucleus collion with equal numbers of protons and neutrons

$$Z = N = A/2$$

$$Q/B = 1/2$$

 $I_z = 0$ (typically also I =0 for each nucleus, thus total isospin also vanishing)

Toward the general initial state

- For total initial I = 0 it is easy to show that $\langle K^+ \rangle = \langle K^0 \rangle$
- The result can be easily extended to any fixed total initial isospin I=I₀.
- It can be even generalized to initial states that are not isospin eigenstates, provided that an appropriate average is performed.

Expected kaon multiplicities

Charge symmetry means that strong interactions are invariant under the inversion of the third component of the isospin of hadron of the initial and final states.

Let us consider an ensemble of initial states being invariant under the charge transformation - probabilities of having initial states related by this transformation are equal. This is the case of nucleus-nucleus collisions where each nucleus has an equal number of protons and neutrons (thus, Iz = 0). Then, the invariance under C-transformation holds also for the final state ensemble:

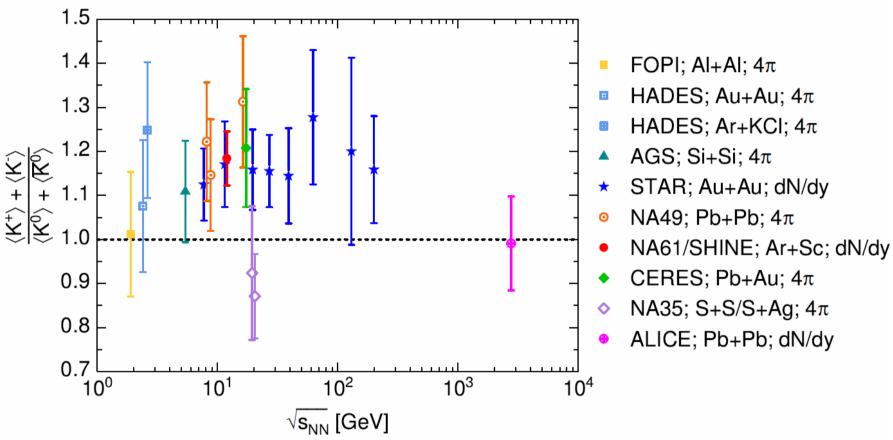
$$\langle K^{+} \rangle = \langle K^{0} \rangle$$
$$\langle K^{-} \rangle = \langle \bar{K}^{0} \rangle$$

$$\langle K^- \rangle = \langle \bar{K}^0 \rangle$$

Neutral kaons and the ratio Rk

$$\begin{pmatrix} \begin{vmatrix} K_S^0 \\ K_L^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \begin{vmatrix} K^0 \\ \bar{K}^0 \end{pmatrix} \end{pmatrix}$$

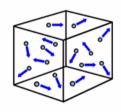
$$\langle K_S^0 \rangle = \frac{1}{2} \langle K^0 \rangle + \frac{1}{2} \langle \bar{K}^0 \rangle = \langle K_L^0 \rangle \qquad \langle K^+ \rangle + \langle K^- \rangle = 2 \langle K_S^0 \rangle$$


$$Q/B=1/2$$

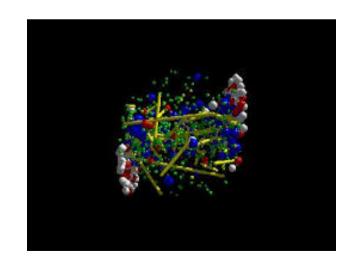
+ isospin exact...

$$Q/B = 1/2 \qquad R_K \equiv \frac{\langle K^+ \rangle + \langle K^- \rangle}{\langle K^0 \rangle + \langle \bar{K}^0 \rangle} = \frac{\langle K^+ \rangle + \langle K^- \rangle}{2 \langle K_S^0 \rangle} = 1$$

Experimental results (NA61/SHINE plus others)

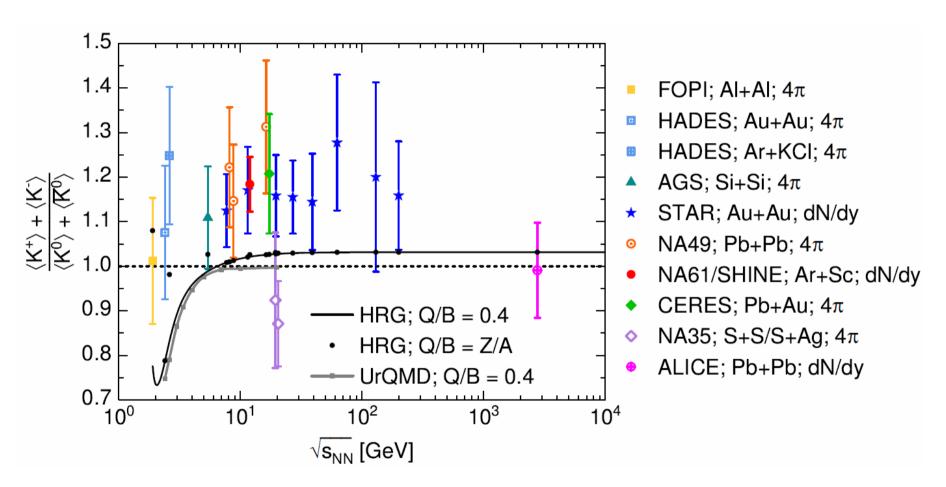

Latest NA61/SHINE result: $R_K = 1.184 \pm 0.061$

Theoretical approaches



HRG (hadron resonance gas approach)

$$\ln Z = \sum_{k} \ln Z_{k}^{\text{stable}} + \sum_{k} \ln Z_{k}^{\text{res}}$$
$$\ln Z_{k}^{\text{stable}} = f_{k} V \int \frac{d^{3}p}{(2\pi)^{3}} \ln \left[1 \pm e^{-E_{p}/T}\right]^{\pm 1}$$



 UrQMD (Hadron-String transport model, fully integrated Monte Carlo simulation of nucleusnucleus simulations)

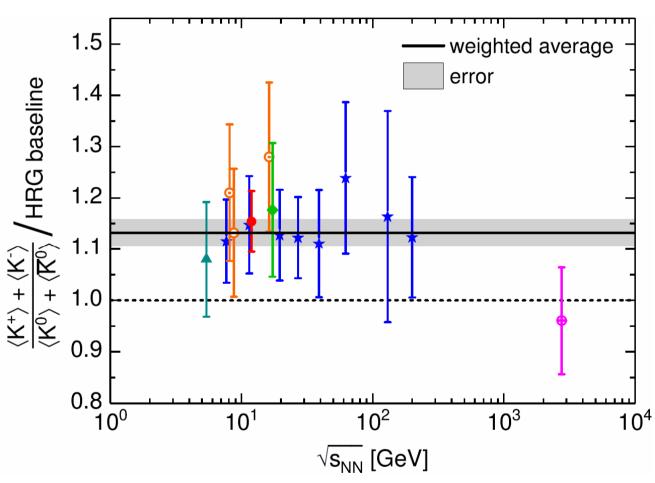
Exp vs theory (HRG+UrQMD)

Almost all experimental dots are above the corresponding theoretical ones

Considerations

- HRG and UrQMD agree with each other
- Q/B <1/2 actually favors neutral kaons
- charged kaons are lighter than neutral ones: this favors charged kaons

Considerations/2


- Non-QCD effects: weak processes are negligible
- Non-QCD effects: electromagnetic processes are small, of the order of α^2
- Decays of φ(1020) meson as well as other asymmetries generate quite small effects

Experiment vs theory: ratio

$$1.132\pm0.026$$

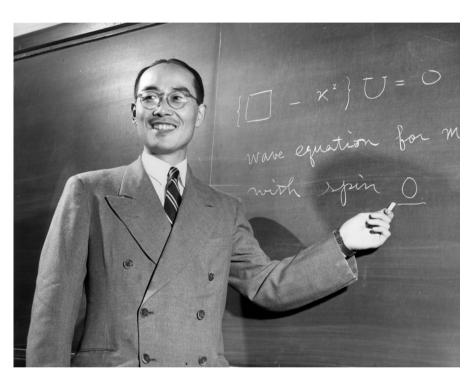
$$\chi^{2}_{\rm min}/{\rm dof} = 0.38$$

The exp/th missmatch is 5.06σ , and increases to 8.25σ for the PDG-liked scaled errors.

Summary and conclusions

- Theory (HRG, UrQMD) cannot explain experiment
- Scattering of nuclei with Z=N=A/2 highly desired...
- Easier but equally good? Average over: $\pi^- + C$ and $\pi^+ + C$

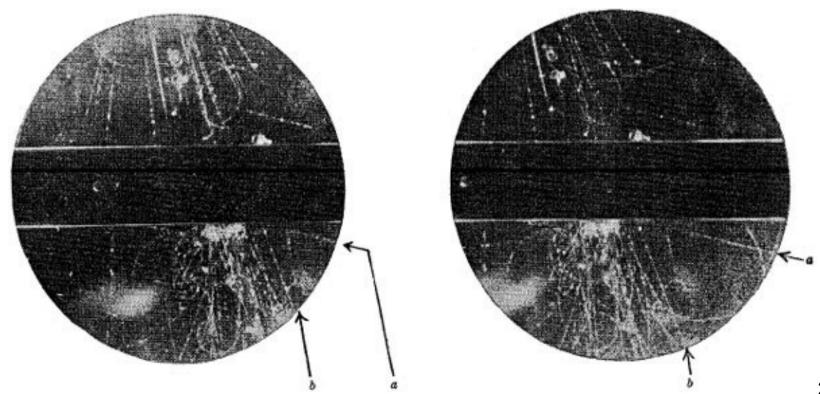
NA61/SHINE PRD 107 (2003) 062004


- Study other isospin multiplets
- Non-perturbative effects? Chiral anomaly (Pisarski&Wilczek,...)

Thanks!

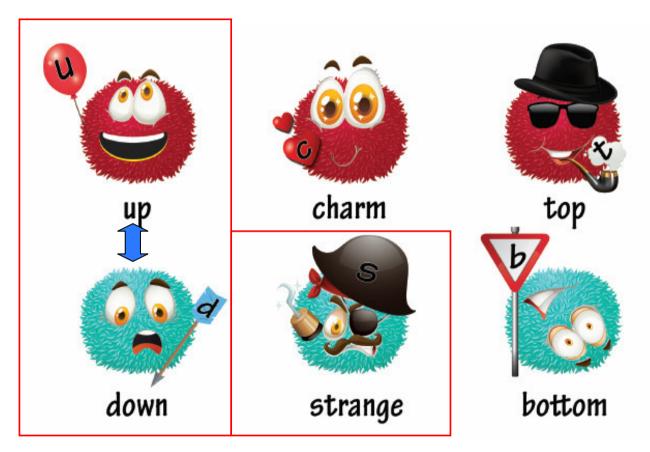
Yukawa (1932) and Kemmer (1939): isospin triplet I=1

$$\begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix}$$


under
$$\hat{C}$$
:

$$\pi^+ \Longleftrightarrow \pi^-$$

Kaons



20 DECEMBER 1947 Clifford Butler and George Rochester discover the kaon; first strange particle

Quarks and QCD, flavor symmetry:

Flavor transformation is a rotation in the (u,d,s) space. Isospin is a subgroup of flavor.

Example of isospin breaking/1

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/84-27 March 8th, 1984

THE ISOSPIN-VIOLATING DECAY $\eta' \rightarrow 3\pi^{\circ}$

IHEP1-IISN2-LAPP3 Collaboration

BR(
$$\eta' + 3\pi^0$$
) = 5.2 $\left(1 - \frac{m_u}{m_d}\right)^2$ 10-3

Example of isospin breaking/2

$$\phi$$
(1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ϕ (1020) MASS

VALUE (MeV) EVTS

DOCUMENT ID

TECN COMMENT

1019.461 ± 0.016 OUR AVERAGE

ϕ (1020) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	K+K-	(49.1 ±0.5) %	
Γ ₂	KL0KS	(33.9 ±0.4) %	

Example of isospin breaking/3

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

J consistent with 1, value 0 ruled out (NGUYEN 77).

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

D*(2007)0 DECAY MODES

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	$D^0 \pi^0$	(64.7 ±0.9) %	₀ –3
Γ ₂	$D^0 \gamma$	(35.3 ±0.9) %	
Γ ₃	$D^0 e^+ e^-$	(3.91±0.33) × 10	

D*(2010) DECAY MODES

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	
_	$D^{0} \pi^{+}$ $D^{+} \pi^{0}$ $D^{+} \gamma$	(67.7±0.5) % (30.7±0.5) % (1.6±0.4) %	

Historical recall: "Shmushkevich" rule

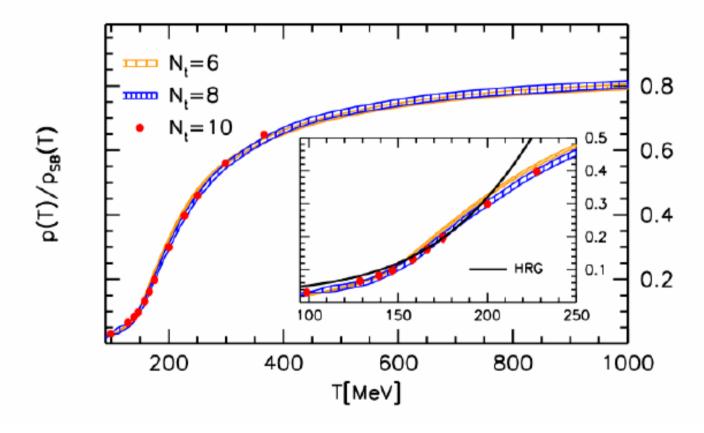
An initial 'uniform' ensemble of hadronic state (that is, one with an equal mean number of each member of any isospin multiplet, such as the scattering of two isosinglet nuclei) evolves into a uniform final-state ensemble.

Uniform stays uniform

Shmushkevich, I.: . Dokl. Akad. Nauk SSSR 103, 235 (1955)

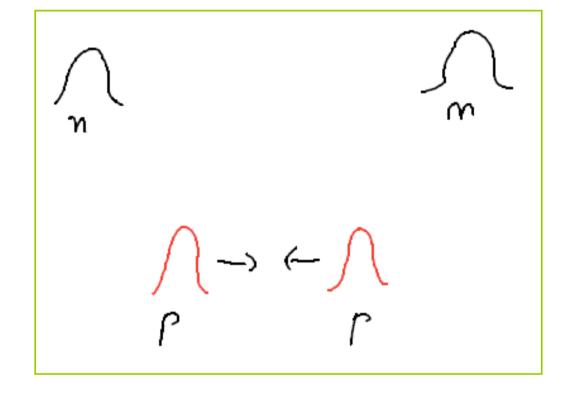
Dushin, N., Shmushkevich, I.: Dokl. Akad. Nauk SSSR 106, 801 (1956)

MacFarlane, A.J., Pinski, G., Sudarshan, G.: Shmushkevich's method for a charge independent theory. Phys. Rev. 140, 1045 (1965) https://doi.org/10.1103/ PhysRev.140.B1045


Wohl, C.G.: Isospin relations by counting. American Journal of Physics 50(8), 748–753 (1982) https://doi.org/10.1119/1.12743

Pal, P.: An Introductory Course of Particle Physics -CRC Press, (2014)

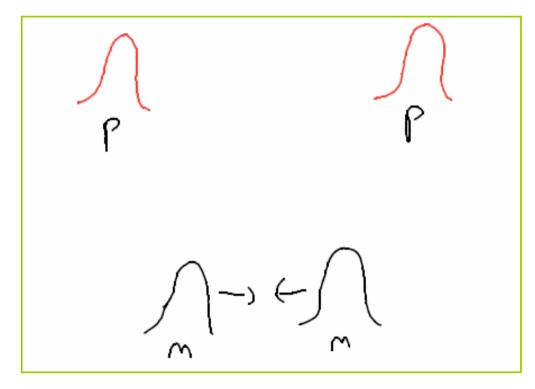
Hadron resonance gas vs lattice results



• All baryons and mesons (m < 2.5 GeV) from PDG [BOTSNAYI et al.]HEP11(2010)077]

PPMM 1-> ?

Is then the previous argumentation wrong?


Just as PP!

More K+ than K

No.
One needs to average.

But ... Etransform

This is the C-transformed version fo the previous reaction.

Here, the protons are spectactors and the neutrons interact.

Just as mm scattering! More Ko than Kt

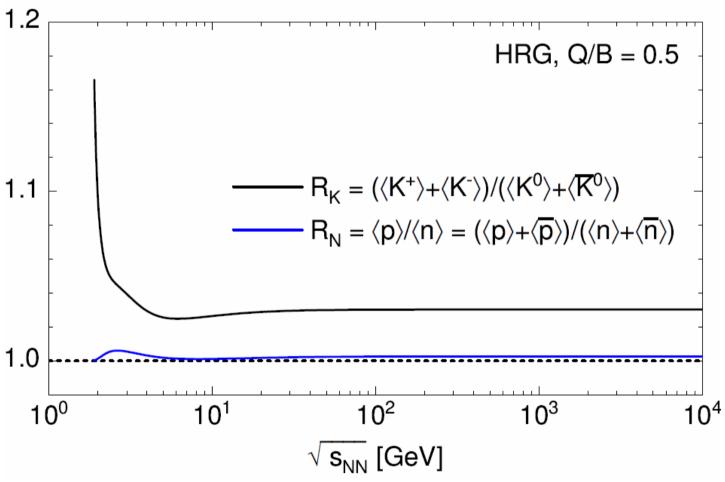
Averaging leads to...

ove equally probable

 \(\text{X} \) = < K >

Formally:

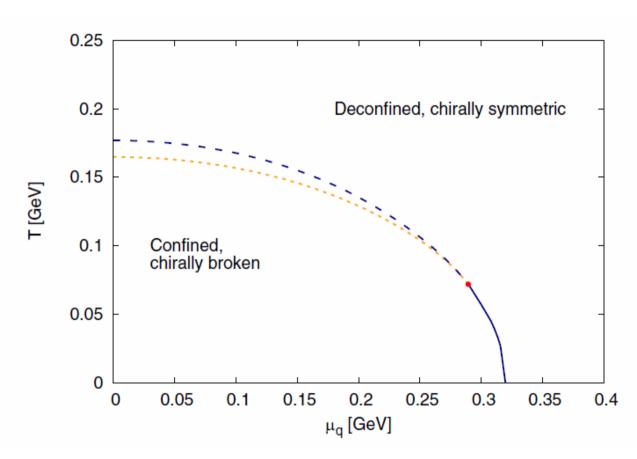
$$\hat{\rho} = \sum_{n} p_n \ket{\Psi_n} ra{\Psi_n}$$


$$\hat{C}\hat{\rho}\hat{C}^{\dagger} = \hat{\rho}$$

This is a general result?

holde

HRG for Q/B=1/2



If we enforce isospin symmetry to be exact, RK = 1 for any energy.

Phase diagram of the eLSM: Nc =3

Details in 2209.09568

Schematic phase diagram at large Nc

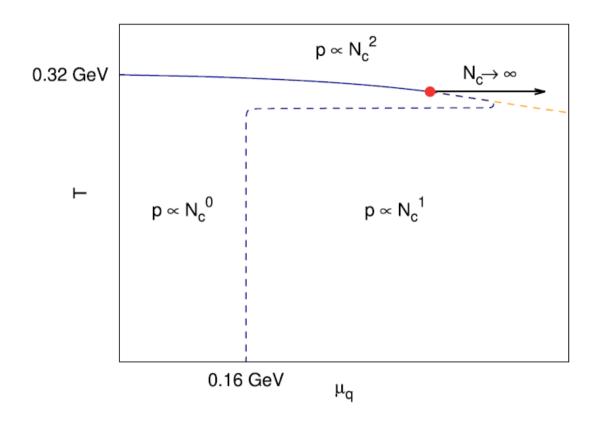


FIG. 13. The schematic phase diagram for large N_c and the N_c scaling of the pressure in the different phases.

Details in 2209.09568.

Then, for the QCD diagram: 3 is not a large number!!!!