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Density variations drive sound waves
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Speed of sound depends upon medium




Speed of sound depends upon relation

of pressure to energy density
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Sound travels faster in stiffer materials
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What if ¢ is negative?

When ¢ > 0 sound propagates as sin(x-c.t)

If c2 < 0 sound propagates as shin(x-c.t) and
we get spinodal decomposition, See Zhang & Li
https //arX|v org/abs/2208 00321 v2
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https://arxiv.org/abs/2208.00321v2

Use multiplicity & p; to measure c.
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6 F. G. Gardim, G. Giacalone, and J.-Y. Ollitrault,
doi:10.1016/j.physletb.2020.135749, arXiv:1909.11609.




The Compact Muon Solenoid

EM Calorimeter (ECAL)
o Hadron Calorimeter (HCAL)

Forward
Calorimeter (HF)

Tracker
(Pixel & Strips)




Estimating entropy and temperature

The multiplicity of the system s o« multiplicity
Temperature « p-

Select PbPb events with HF forward calorimeters
Measure spectra for tracks with |n|<0.5
Extrapolate p;spectra to p;= 0 in small bins of HF
Fit spectra with Hagadorn function to get <p>, N,

In|<2.4
In|<5.2
In|<3.0

In|<2.5




Minimizing systematics

Since we only need to know the logarithm of
the multiplicity and <p;> we can reduce our
systematics by normalizing these variables to
their values for 0-5% central events

N..* = multiplicity for 0-5% centrality
<p>° = mean p+ for 0-5% centrality
Temperature estimated by <p+>/3




Look on tails of multiplicity distribution

Event fraction

P, > 0 GeV, Inl <0.5
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Correlate average p; with multiplicity
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Starting to map c.? versus temperature
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Nat Phys 16(2020) 615

50 '260' 250 300 350
= (p, \°/3) (MeV)

0.1—

12 eff



Conclusions

« C.2=0.241 + 0.002 (stat) £ 0.016 (sys)
« Data in good agreement with lattice QCD

* It would be very interesting to look at lower

energy data to map the temperature
dependence of the speed of sound.
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Extracting the speed of sound

To extract the speed of sound, the expression that describes (pr)"°™ as a function of NJ™ is

taken from Ref. [16], as
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Here, NX¢ and ¢ represent the mean and root-mean-square width of the charged-particle mul-

tiplicity distribution at b = 0, normalized by N . In Fig. 2, the NX'* value corresponds to the
vicinity of the location beyond which the knee-shaped distribution starts rapidly falling. For

. norm knee knee norm . - 5 norm
the region of NJ°™ < Nir¢, the (Ni*¢|NLo™) variable approximately reduces to N3°™, so

Eq. (2) yields a value of unity. For the region of N2o™ > Nkn¢¢ the (NKnee|Nnorm) yariable satu-

rates at NX™¢ for sufficiently large N5°™. In this limit, Eq. (2) becomes a simple power function,

with ¢Z being the power of the function. The parameters N5¢ and ¢ can be constrained by fit-
ting the measured multiplicity distribution using the procedure described in Ref. [37]. The
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