

Bayesian location of the QCD critical point: a holographic perspective

Claudia Ratti

UNIVERSITY of HOUSTON

With: M. Hippert, J. Grefa, I. Portillo, J. Noronha, J. Noronha- Hostler, R. Rougemont and M. Trujillo

Motivation

- Is there a critical point on the QCD phase diagram?
- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- What is the nature of matter in the core of neutron stars?

We need models at high μ_B

• Lattice QCD: Equation of state up to $\mu_B/T \sim 3.5$

S. Borsanyi et al., PRL (2021)

We need models at high μ_B

M muses

• Lattice QCD: Equation of state up to $\mu_B/T \sim 3.5$

S. Borsanyi et al., PRL (2021)

• No sign of criticality observed within this region

We need models at high μ_B

• Lattice QCD: Equation of state up to $\mu_B/T \sim 3.5$

S. Borsanyi et al., PRL (2021)

• No sign of criticality observed within this region

• Extrapolation: good description of the QGP required

We need models at high μ_{B}

M muses

- Lattice QCD: Equation of state up to $\mu_B/T \sim 3.5$

S. Borsanyi et al., PRL (2021)

• No sign of criticality observed within this region

• Extrapolation: good description of the QGP required

- "Black hole engineering": tweak holographic model to reproduce lattice QCD results
 - S. S. Gubser and A. Nellore, PRD (2008)
 - O. DeWolfe, S. S. Gubser and C. Rosen, PRD (2011)
 - R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. R., R. Rougemont, PRD (2017)
 - J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. R., R. Rougemont, PRD (2021)

Black hole engineering in AdS space

- 5D bulk: Classical gravity with asymptotically Anti-deSitter (AdS5) geometry.
- 3+1D Boundary: Strongly coupled fluid in Minkowski spacetime.
 J. M. Maldacena, Adv. Theor. Math. Phys. (1998)
- Black hole: non-zero Hawking temperature and charge

- Strongly coupled, nearly inviscid behavior of the QGP.
 - P. Kovtun, D. T. Son, A. O. Starinets, PRL (2005)

Einstein-Maxwell-Dilaton model

- S. S. Gubser and A. Nellore, PRD (2008)
- O. DeWolfe, S. S. Gubser and C. Rosen, PRD (2011)
- Breaking of conformal symmetry: dilaton field ϕ
- R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C.R., R. Rougemont, PRD (2017)
- J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. R., R. Rougemont, PRD (2021) R. Rougemont et al., Prog. Part. Nucl. Phys. (2024)
- Dual to baryon chemical potential μ : Abelian gauge field A^{μ}

Action:

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R - \frac{(\partial_\mu \phi)^2}{2} - V(\phi) - \frac{f(\phi)F_{\mu\nu}^2}{4} \right]$$

• Two potentials: $V(\phi)$ and $f(\phi)$, tweaked to fit lattice QCD results

Α

٠

Einstein-Maxwell-Dilaton model

Α

•

- S. S. Gubser and A. Nellore, PRD (2008)
- O. DeWolfe, S. S. Gubser and C. Rosen, PRD (2011)
- Breaking of conformal symmetry: dilaton field ϕ .
- R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C.R., R. Rougemont, PRD (2017) J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. R., R. Rougemont, PRD (2021) R. Rougemont et al., Prog. Part. Nucl. Phys. (2024)
- Dual to baryon chemical potential μ : Abelian gauge field A^{μ} .

Action:

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R - \frac{(\partial_\mu \phi)^2}{2} \left(-V(\phi) + \frac{f(\phi)F_{\mu\nu}^2}{4} \right) \right]$$

• Two potentials: $V(\phi)$ and $f(\phi)$, tweaked to fit lattice QCD results

Einstein-Maxwell-Dilaton model

5d gauge

field

- S. S. Gubser and A. Nellore, PRD (2008)
- O. DeWolfe, S. S. Gubser and C. Rosen, PRD (2011)
- Breaking of conformal symmetry: dilaton field ϕ ٠
- R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C.R., R. Rougemont, PRD (2017) J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. R., R. Rougemont, PRD (2021)
- R. Rougemont et al., Prog. Part. Nucl. Phys. (2024)

140

160

180

Dual to baryon chemical potential μ : Abelian gauge field A^{μ} .

Action:

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R - \frac{(\partial_\mu \phi)^2}{2} - V(\phi) - \frac{f(\phi)F_{\mu\nu}^2}{4} \right]$$

Two potentials: $V(\phi)$ and $f(\phi)$, tweaked to fit lattice QCD results ٠

Conserved

baryon charge

 $A_{\mu} \Longrightarrow U(1)_{B}$

200

 $T \,[\mathrm{MeV}]$

240

260

280

300

•

coupling

Finite-density properties

• Model predictions agree with lattice QCD results where avaiable

- Powerful, flexible model capable of describing crossover region and beyond
- Real-time calculations also possible

Finite-density properties

•

Model predictions agree with lattice QCD results where avaiable •

Phase diagram from holography

• Dilaton and electric fields at horizon: ϕ_0 and Φ_1 fully specify the physical state

Polynomial-Hyperbolic Ansatz (PHA)

• Interpolates between R. Critelli, C.R. et al., PRD (2017) and R.-G. Cai et al., PRD (2022)

$$V(\phi) = -12\cosh(\gamma \phi) + b_2 \phi^2 + b_4 \phi^4 + b_6 \phi^6$$
$$f(\phi) = \frac{\operatorname{sech}(c_1\phi + c_2\phi^2 + c_3\phi^3)}{1 + d_1} + \frac{d_1}{1 + d_1}\operatorname{sech}(d_2\phi)$$

Parametric Ansatz (PA)

• Similar shapes, more interpretable parameters

$$V(\phi) = -12 \cosh\left[\left(\frac{\gamma_1 \Delta \phi_V^2 + \gamma_2 \phi^2}{\Delta \phi_V^2 + \phi^2}\right)\phi\right]$$
$$f(\phi) = 1 - (1 - A_1)\left[\frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\phi - \phi_1}{\delta \phi_1}\right)\right] - A_1\left[\frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\phi - \phi_2}{\delta \phi_2}\right)\right]$$

Bayesian black-hole engineering

- What scenarios described by model compatible with the lattice results + error bars?
- Systematic scan over possible extrapolations to higher densities.
- Use Bayesian inference tools.

Bayes' Theorem

$$\underbrace{P(\text{model} | \text{results})}_{\text{posterior } \mathcal{P}} \times P(\text{results}) = \underbrace{P(\text{results} | \text{model})}_{\text{likelihood } \mathcal{L}} \times \underbrace{P(\text{model})}_{\text{prior knowledge}}$$

Gaussian Likelihood

$$\mathcal{L} = \exp\left\{-rac{1}{2}oldsymbol{\delta}oldsymbol{x}^Toldsymbol{\Sigma}^{-1}oldsymbol{\delta}oldsymbol{x} - rac{1}{2}\log\detoldsymbol{\Sigma} + ext{constant}
ight\}$$

• $\boldsymbol{\delta x}$: deviation for s(T) and $\chi_2^{(B)}(T)$ at $\mu = 0$.

• Correlation $\Gamma \equiv \exp(-\Delta T/\xi_T)$ between neighboring points \rightarrow extra model parameter.

- Random evolution to sample from posterior
- Transition probabilities such that **P** is stationary limit
- Differential evolution MCMC: suited for correlations Differential evolution

C.J.F. Ter Braak, Statistics and Computing 16 (2006)

- **1** Use other chains j, k to update chain $i \neq j \neq k$: $\theta_i \to \theta_i + \frac{b}{\sqrt{2d}}(\theta_j \theta_k) + \xi_i$.
- **2** Compute *P* from model EoS.
 - If $\mathcal{P}/\mathcal{P}_0 > 1$, transition to new parameters.
 - Otherwise, accept transition with probability $\mathcal{P}/\mathcal{P}_0$.
- **3** Repeat.
 - Inputs: baryon susceptibility and entropy density from lattice QCD

Results

- Flat prior for parameters
- 20% of prior samples give no critical point

Claudia Ratti

M. Hippert, C. R. et al, arXiv:2309.00579.

Posterior critical points

• All posterior predictions for the critical point location collapse around these regions

 $(T_c, \mu_{Bc})_{PHA} = (104 \pm 3, 589^{+36}_{-26}) \text{ MeV}, \quad (T_c, \mu_{Bc})_{PA} = (107 \pm 1, 571 \pm 11) \text{ MeV}$

Both Ansätze overlap at 1σ . Robust results!

M. Hippert, C. R. et al, arXiv:2309.00579.

Fu, Pawlowski, Rennecke, PRD (2020)

Gunkel, Fischer, PRD (2021)

P. Dimopoulos et al., PRD (2022)

G. Basar, PRL (2021)

Similar locations are found in FRG, DSE and Pade estimates

Posterior critical points

🕅 muses

• All posterior predictions for the critical point location collapse around these regions

 $(T_c, \mu_{Bc})_{PHA} = (104 \pm 3, 589^{+36}_{-26}) \text{ MeV}, \quad (T_c, \mu_{Bc})_{PA} = (107 \pm 1, 571 \pm 11) \text{ MeV}$

Similar locations are found in FRG, DSE and Pade estimates

Gunkel, Fischer, PRD (2021) Fu, Pawlowski, Rennecke, PRD (2020) G. Basar, PRL (2021) P. Dimopoulos et al., PRD (2022)

Claudia Ratti

Conclusions

- Powerful description of the QGP, matching finite-density lattice QCD results
- Larger statistical preference for a critical point after constraints: PA model: ~80% of prior \rightarrow 100% of posterior
- All posterior predictions for the critical point location collapse around these regions

 $(T_c, \mu_{Bc})_{PHA} = (104 \pm 3, 589^{+36}_{-26}) \text{ MeV}, \quad (T_c, \mu_{Bc})_{PA} = (107 \pm 1, 571 \pm 11) \text{ MeV}$

• Other approaches (FRG, DSE, Pade) find very similar results

Backup slides

• Development within the MUSES Framework: Multi-institutional collaboration for a unified solver for the equation of state, bridging models and applications

- Support and advising by cyberinfrastructure and computer-science experts T. Andrew Manning and Roland Haas
- Improved method to extract asymptotic UV scaling and thermodynamics
- Large boost in performance and numerical stability

Correlation strength

• The parameter Γ is an indicator for the correlation among lattice data between neighboring points

$$\begin{split} \phi''(r) + \left[\frac{h'(r)}{h(r)} + 4A'(r) - B'(r)\right] \phi'(r) - \frac{e^{2B(r)}}{h(r)} \left[\frac{\partial V(\phi)}{\partial \phi} + -\frac{e^{-2[A(r) + B(r)]} \Phi'(r)^2}{2} \frac{\partial f(\phi)}{\partial \phi}\right] &= 0, \\ \Phi''(r) + \left[2A'(r) - B'(r) + \frac{d[\ln f(\phi)]}{d\phi} \phi'(r)\right] \Phi'(r) &= 0, \\ A''(r) - A'(r)B'(r) + \frac{\phi'(r)^2}{6} &= 0, \\ h''(r) + [4A'(r) - B'(r)]h'(r) - e^{-2A(r)} f(\phi) \Phi'(r)^2 &= 0, \\ h(r)[24A'(r)^2 - \phi'(r)^2] + 6A'(r)h'(r) + \\ + 2e^{2B(r)}V(\phi) + e^{-2A(r)} f(\phi) \Phi'(r)^2 &= 0, \end{split}$$

- Thermodynamics extracted from scalings after conversion to physical units.
- Requires near-boundary scalings,

$$\phi \sim \phi_A \, e^{-\nu A(r)}, \quad \Phi \sim \Phi_0^{\rm far} + \Phi_2^{\rm far} \, e^{-2A(r)}, \quad A \sim A_{-1}^{\rm far} \, r + A_0^{\rm far}$$

• Inversion to find ϕ_A and Φ_2^{far} : large coefficient \times tiny number = pure noise.

PHA model

PA model

PHA Potentials

PA Potentials

