The 21st International Conference on Strangeness in Quark Matter

CENTRAL CRITICA NORMAL UNIT

Production of Light Nuclei in Au+Au Collisions with the STAR BES-II Program

Yixuan Jin (for the STAR Collaboration)

Central China Normal University

June 5, 2024

STAR

Outline

- Motivation
- > The STAR Experiment
 - Dataset and Particle Identification
- Results and Discussions
 - Transverse Momentum Spectra
 - Particle Yields and Ratios
 - Coalescence Parameters
 - Nuclear Modification Factors
- Summary and Outlook

Motivation – QCD Phase Diagram and HIC

Beam Energy Scan Program at RHIC:

- Control beam energy and centrality to vary initial *T* and $\mu_{\rm B}$.
- Create QGP and explore its properties.
- Map out the crossover and/or 1st order QCD phase boundary.
- Search for the signatures of possible QCD critical point.

A. Bzdak, S. Esumi, V. Koch, J. F. Liao, M. Stephanov, and N. Xu. Physics Reports, 853 (2020) 1–87.
X. Luo, N. Xu, Nucl. Sci. Tech. 28, (2017) 112
X. Luo, Q. Wang, N. Xu, P. F. Zhuang. *Properties of QCD Matter at High Baryon Density.* Springer, 2022. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Motivation – Light Nuclei

1. Why Light Nuclei?

- May carry information about local baryon density fluctuations.
- Provide an effective probe to study 1st order phase boundary and the QCD critical point.
- **2.** Observable : Yield ratio of light nuclei $(N_t \times N_p/N_d^2)$
 - Based on coalescence model:

 $N_{\rm A} = g_{\rm c} \int \mathrm{d} \Gamma \rho_s(\{x_i, p_i\}) \times W_{\rm A}(\{x_i, p_i\})$

factor $g = \frac{1}{2\sqrt{3}}$ comes from the thermal equilibrium assumption of nucleon abundances.

K. Sun et al. Phys.Lett.B 774 (2017) 103-107 *E. Shuryak et al. Phys.Rev.C* 101 (2020) 3, 034914

RHIC Beam Energy Scan Program

- ✤ STAR has completed BES-II data-taking with factors of 10 20 more statistics compared to BES-I.
- ♦ BES-II: 8 collider energies ($\sqrt{s_{NN}} = 7.7 54 \text{ GeV}$) / 12 FXT energies ($\sqrt{s_{NN}} = 3.0 13.7 \text{ GeV}$)
- ♦ $\mu_{\rm B}$ coverage : 25 < $\mu_{\rm B}$ < 750 MeV.

STAR Collaboration, arXiv:1007.2613 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

June 5, 2024

The Solenoidal Tracker At RHIC (STAR)

Enlarge the rapidity acceptance

Improve particle identification

Lower $p_{\rm T}$ cut-in to reduce uncertainty in spectra extrapolation

June 5, 2024

*

**

**

Yixuan Jin, SQM 2024

eTOF: STAR and CBM eTOF group, arXiv: 1609.05102

Results from RHIC BES-I

STAR Collaboration, Phys.Rev.Lett. 130 (2023) 202301

The yield ratio exhibits a scaling behavior: A trend driven by the interplay between the size of light nuclei and the size of the fireball created in HIC.

$$\frac{N_{\rm t} \times N_{\rm p}}{N_{\rm d}^2} = p_0 \times \left(\frac{R^2 + \frac{2}{3}r_{\rm d}^2}{R^2 + \frac{1}{2}r_{\rm t}^2}\right)^3, \text{ where } R \propto (dN_{ch}/d\eta)^{1/3}.$$

W. Zhao, K. J. Sun, C. M. Ko and X. Luo, Phys. Lett. B 820 (2021) 136571

- > The ratios at $\sqrt{s_{\rm NN}} = 19.6$ and 27 GeV in 0-10% centrality show enhancements with respect to the coalescence baseline with a combined significance of 4.1σ .
- The thermal model overestimates the experimental data and shows a clear difference compared to the coalescence model.

Results from RHIC BES-I

STAR Collaboration, Phys.Rev.Lett. 130 (2023) 202301

> Non-monotonic behavior observed in 0-10% central Au+Au collisions around $\sqrt{s_{NN}} = 19.6$ and 27 GeV.

- > Monotonic behavior in peripheral collisions can be well described by coalescence inspired fit.
- ➢ Flat trends are predicted by theoretical models of AMPT and MUSIC + UrQMD hybrid model.

Results from RHIC FXT at $\sqrt{s_{NN}}$ = 3 GeV

- > Measured the rapidity dependence of light nuclei production.
 - The centrality dependence of rapidity density is attributed to the interplay between baryon stopping and the spectators' contribution.
- > The yield ratio $N_t \times N_p / N_d^2$ of mid-rapidity measured at $\sqrt{s_{NN}} = 3$ GeV follow the trend of world data.

June 5, 2024

Particle Identification and Signal Extraction

June 5, 2024

Transverse Momentum Spectra

June 5, 2024

(anti-)Proton Weak Decay Feed-down Correction

 $\Lambda \rightarrow p + \pi^{-}$, branching ratio = 63.9 % $\Sigma^{+} \rightarrow p + \pi^{0}$, branching ratio = 51.57 % $\Xi^{-} \rightarrow \Lambda + \pi^{-}$, branching ratio = 99.887 % $\Xi^{0} \rightarrow \Lambda + \pi^{0}$, branching ratio = 99.524 %

- The primordial spectra were obtained by subtracting the (anti-)proton weak decayed from strange hadrons.
- > Data driven method: Use STAR published strange particle $(\Lambda, \Sigma^+, \Xi^-, \Xi^0)$ yields and embedding simulation samples.
- > The spectra of Σ^+ : Obtained by multiplying the Λ spectra by a factor of 0.27.
- > The spectra of Ξ^0 : Assumed to be the same as those of Ξ^- .

- \blacktriangleright The systematic uncertainties are reduced in BES-II because the $p_{\rm T}$ ranges are extended.
- > Yields for light nuclei increase from peripheral to central collisions.
- > dN/dy for positive particles decrease with increasing energy, while the behavior is opposite for antiparticles.

June 5, 2024

- > Mass dependence of $\frac{dN/dy}{2I+1}$:
 - Fitted by an exponential function form p_0/P^{A-1} ,

where P is the penalty factor and can be determined by the Boltzmann factor $e^{(m_N - \mu_B)/T}$ in thermal model.

- The production of light nuclei are proportional to the spin degeneracy.
- The penalty factor is larger at higher beam energy, which indicates that it is harder to form high-mass objects.

E864 Collaboration, Phys.Rev.Lett. 83 (1999) 5431-5434 STAR Collaboration, Phys.Rev.Lett. 130 (2023) 202301

- > Mass dependence of $\langle p_{\rm T} \rangle$:
 - Fitted by an linear function form $p_0 + p_1 \times m_A$.
 - The $\langle p_{\rm T} \rangle$ increases linearly with increasing mass of the particles.

STAR, Phys. Rev. Lett. 130, 202301 (2023)

- > The particle ratios are consistent with BES-I.
- The particle ratios show a monotonic decrease with collision energy.
- d/p ratio can be described well by the thermal model.
- The thermal model overestimates t/p and ³He/p by a factor of approximately two.
 - The hadronic re-scatterings may play a crucial role during the hadronic expansion phase which lead to this discrepancy.

V. Vovchenko, B. Dönigus, B. Kardan, M. Lorenz, and H. Stoecker, Phys. Lett. B, (2020) 135746;

K.J. Sun, R. Wang, C. M. Ko, Y.G. Ma, and C. Shen, Nature Commun, 15 (2024) 1, 1074

- The statistical and systematic uncertainties are shown as vertical lines and color bands, respectively.
- > \bar{p}/p and \bar{d}/d ratios show strong centrality dependence.
 - This could be due to the annihilation between the particles and antiparticles.

June 5, 2024

Coalescence Parameter

• In the coalescence picture, the invariant yield of light nuclei is proportional to the invariant yield of nucleons. The coalescence parameter B_A reflects the probability of nucleon coalescence, which is related to the local nucleon density.

$$E_{\rm A}\frac{\mathrm{d}^3 N_{\rm A}}{\mathrm{d}^3 p_{\rm A}} = B_{\rm A} \left(E_{\rm p}\frac{\mathrm{d}^3 N_{\rm p}}{\mathrm{d}^3 p_{\rm p}} \right)^{\rm Z} \left(E_{\rm n}\frac{\mathrm{d}^3 N_{\rm n}}{\mathrm{d}^3 p_{\rm n}} \right)^{\rm A-\rm Z} \approx B_{\rm A} \left(E_{\rm p}\frac{\mathrm{d}^3 N_{\rm p}}{\mathrm{d}^3 p_{\rm p}} \right)^{\rm A}$$

R. Scheibl and U. Heinz Phys.Rev.C 59 (1999) 1585-1602 *STAR Collaboration, Phys.Rev.C* 99 (2019) 6, 064905

- > B_A increase with increasing p_T which might indicate an expanding collision system.
- \succ B_A increase from central to peripheral collisions, which can be explained by a decreasing source volume.

Nuclear Modification Factors (R_{cp})

- $R_{\rm cp}(p_{\rm T}) = \frac{\langle N_{\rm coll} \rangle_{\rm p}}{\langle N_{\rm coll} \rangle_{\rm c}} \times \frac{{\rm d}^2 N_{\rm AA}^{\rm c}/{\rm d} p_{\rm T} {\rm d} y}{{\rm d}^2 N_{\rm AA}^{\rm p}/{\rm d} p_{\rm T} {\rm d} y}, \langle N_{\rm coll} \rangle$ is the average number of binary nucleon–nucleon collisions per event.
- ♦ Number of constituent nucleon (NCN) scaling for $R_{cp}(p_T)$:

$$R_{\rm cp}^{*}\left(p_{\rm T}\right) = \left(\frac{B_{A,\,\rm Central}}{B_{A,\,\rm Peripheral}}\right)^{-1/A} \left(R_{\rm cp}(Ap_{\rm T})\right)^{1/A} \left(\frac{\langle N_{\rm coll}\rangle_{\rm c}}{\langle N_{\rm coll}\rangle_{\rm p}}\right)^{1/A-1} \equiv \left(\frac{B_{A,\,\rm Central}}{B_{A,\,\rm Peripheral}}\right)^{-1/A} \tilde{R}_{\rm cp}^{*}\left(p_{\rm T}\right)$$

C. S. Zhou, Y. G. Ma, and S. Zhang. Eur.Phys.J.A 52 (2016) 12, 354

- \succ R_{cp} for different particles exhibit distinct trends at all energies.
- > In coalescence picture, the \tilde{R}_{cp}^* of light nuclei will follow a common trend when scaled by a constant factor, which is determined by \tilde{R}_{cp}^* $^{\text{Nuclei}}/\tilde{R}_{cp}^*$ at $p_T/A = 0.65$ GeV/c.

June 5, 2024

Summary and Outlook

Summary:

- ➤ We report the light nuclei productions (p, d, ³He, \bar{p} and \bar{d}) in Au+Au collisions at $\sqrt{s_{NN}} = 7.7 27$ GeV from RHIC STAR BES-II.
- > The particle ratios N_d/N_p and $N_{^3He}/N_p$ have been measured.
 - The particle ratios show a monotonic decrease with collision energy.
 - The thermal model over-predicts t/p and ³He/p by a factor of about 2.

> The coalescence parameter B_A have been measured.

- Collective expansion leads to an increase in B_A from low to high p_T
- Decreasing source volume results in a rise of B_A from central to peripheral collisions.
- > The nuclear modification factor R_{cp} of light nuclei shows a scaling behavior, which is consistent with a nucleon coalescence mechanism of light nuclei production.

Outlook:

- ♦ Working on the compound ratios $(N_p \times N_t/N_d^2 \text{ and } N_p \times N_{^3\text{He}}/N_d^2)$ in BES-II.
- Continue the analysis of other BES-II (collider + FXT) energies.
- ↔ Working on the production of ⁴He in BES-II.

Thank you for your attention!

June 5, 2024

Backup

Au+Au collisions at RHIC (Collider mode)				Au+Au collisions at RHIC (Fixed-Target)				
$\sqrt{s_{ m NN}}$ (GeV)	nEvents (M)	μ_{B} (MeV)	Time	$\sqrt{s_{NN}}$ (GeV)	E _{beam} (GeV)	nEvents (M)	μ _B (MeV)	Time
200	380	25	Run-10, 19	13.7	100	50	280	Run-21
62.4	46	75	Run-10	11.5	70	50	320	Run-21
54.4	1200	85	Run-17	9.2	44.5	50	370	Run-21
39	86	112	Run-10	7.7	31.2	260	420	Run-18, 19, 20
27	585	156	Run-11, <mark>18</mark>	7.2	26.5	470	440	Run-18, 20
19.6	595	206	Run-11, <mark>19</mark>	6.2	19.5	120	490	Run-20
17.3	256	230	Run-21	5.2	13.5	100	540	Run-20
14.6	340	262	Run-14, <mark>19</mark>	4.5	9.8	110	590	Run-20
11.5	235	316	Run-10, 20	3.9	7.3	120	633	Run-20
9.2	160	372	Run-20	3.5	5.75	120	670	Run-20
7.7	104	420	Run-10, <mark>21</mark>	3.2	4.59	200	699	Run-19
				3.0	3.85	2300	750	Run-18, 21

STAR has completed BES-II data-taking with factors of 10-20 more statistics compared to BES-I.

✤ BES-II: 8 collider energies (7.7 – 54 GeV) / 12 FXT energies (3.0 - 13.7 GeV)

↔ $\mu_{\rm B}$ coverage : 25 < $\mu_{\rm B}$ < 750 MeV.

STAR, arXiv:1007.2613 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

June 5, 2024

Backup – Transverse Momentum Spectra

✤ Blast-Wave Function

$$\frac{1}{2\pi p_{T}} \frac{d^{2}N}{dp_{T}dy} \propto \int_{0}^{R} r drm_{T} I_{0} \left(\frac{p_{T} sinh\rho}{T_{kin}}\right) K_{1} \left(\frac{m_{T} cosh\rho}{T_{kin}}\right)$$
$$\rho = tanh^{-1}\beta_{r}, \ \beta_{r}(r) = \beta_{T} \left(\frac{r}{R}\right)^{n}, \text{ n fixed at } 1$$

- ✤ All efficiencies and corrections are included
 - ✓ Energy Loss Correction
 - ✓ TPC Tracking Efficiency
 - ✓ TOF Matching Efficiency
 - ✓ Knock-out Protons (p)

June 5, 2024

Backup – Transverse Momentum Spectra

$$\begin{split} & \bigstar \quad \text{Blast-Wave Function} \\ & \frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \propto \int_0^R r drm_T I_0 \left(\frac{p_T sinh\rho}{T_{kin}}\right) K_1 \left(\frac{m_T cosh\rho}{T_{kin}}\right) \\ & \rho = tanh^{-1} \beta_r, \, \beta_r(r) = \beta_T \left(\frac{r}{R}\right)^n \end{split}$$

Freeze-out parameters:

- T_{kin} : kinetic freeze-out temperature $\langle \beta_T \rangle$: average radial flow velocity n: n=1 I_0 and K_1 : from Bjorken Hydrodynamic assumption
- ✤ All efficiencies and corrections are included
 - ✓ Energy Loss Correction
 - ✓ TPC Tracking Efficiency
 - ✓ TOF Matching Efficiency
 - \checkmark Absorption Correction