Jan Orlinski for the HADES Collaboration

Analysis of charged kaon flow in Ag+Ag collisions registered with HADES

The 2 Ist International Conference on Strangeness in Quark Matter 5th of June, 2024
Strasbourg, France

FACULTY OF
漂HYSICS

Overview

I. Transverse flow - introduction and motivation
2. The HADES experiment
3. Experimental details
4. Identification and $p_{T}: y$ distribution of $K^{ \pm}$mesons
5. Preliminary flow patterns of $K^{ \pm}$mesons
6. Summary and outlook

The ϕ azimuthal angle in heavy-ion collisions

nut The azimuthal angle matters in describing momenta of particles emitted from heavy ion collisions
nut The distributions in this angle are not isotropic!
nIn Anisotropies of these distributions are called the transverse flow (also called the anisotropic or the collective flow)
nint Caused by non-spherical geometry

Elliptic Flow
 of the collision and effects of collisions dynamics

Sensitivity of flow to physical effects

Int Significant extension of our current understanding of RHIC's

- v_{n} often reported in small or partly integrated phase space regions
- HADES provides large acceptance and statistics!
n|l* Azimuthal angle distribution sensitive to properties of nuclear matter (NM):
- Equation of State of the NM
- Interactions within NM, and its interaction with produced particles
- Good observable for transport models comparisons!
whe Why strange particles?
- Near-threshold production \rightarrow they act as probe particles
- Strangeness conservation
- Significant Kaon-Nucleon potential predicted

High Acceptance Di-Electron Spectrometer

un Installed at the SISI8 accelerator at GSI (Darmstadt, Germany)
nut Measures products of $A+A$ as well as $p+A, p+p$ and $\pi+A$ collisions
(11* 0.2-4.5 GeV/nucleon energy regime;
nut Part of FAIR Phase-0 program (SIS-I00 accelerator under construction)

Previous flow reports from HADES

Jan Orlinski
Faculty of Physics, University of Warsaw

HADES

2 Ist SQM 2024 5.06.2024

Event-plane reconstruction

|"II* The azimuthal angle is only meaningful if we correct it for the random orientation of collisions $\Psi_{R P}$ in the laboratory reference frame

IIII We obtain the first order reaction plane $\Psi_{E P, 1}$ from the spectators measured in the Forward Wall

Measurement of flow

n"me The azimuthal angle distribution can be described with a Fourier series:

$$
\frac{d N}{d \Delta \phi}=\mathcal{N}\left(1+2 \sum_{n} v_{n} \cos (n \Delta \phi)\right)
$$

Ime The goal of flow analysis is to obtain maps of $v_{1,2, \ldots}\left(p_{t}, y_{0}\right)$
nill Notice:

- v_{1} is called directed flow and v_{2} is called elliptic flow
- collision symmetry enforces $v_{1}(y)=-v_{1}(-y)$ from which follows that $v_{1}\left(y_{C M}\right)=0$

Event-plane reconstruction resolution

Nult Standard method by J.-Y. Ollitrault was used to correct for the finite resolution of event plane reconstruction (J.-Y. Ollitrault, arXiv:97 I 003 [nucl-ex])

In Divide the spectators into two random sub-events (A and B) and evaluate $\Delta \Psi_{A B}=\Psi_{A}-\Psi_{B}$
nIII Resolution for n-th harmonic is:

$$
\mathscr{R}=\frac{\sqrt{\pi}}{2} \cdot \chi \cdot \exp \left(-\frac{\chi^{2}}{2}\right) \cdot\left[I_{\frac{n-1}{2}}\left(\frac{\chi^{2}}{2}\right)+I_{\frac{n+1}{2}}\left(\frac{\chi^{2}}{2}\right)\right],
$$

Event plane reconstruction resolution

where
$I_{k}(x)$ is the modified Bessel function of the first kind and $\chi^{2}=-2 \ln \left(\frac{2 \cdot \Delta \Psi_{A B}\left(90^{\circ}-180^{\circ}\right)}{\Delta \Psi_{A B}\left(0^{\circ}-180^{\circ}\right)}\right)$

Ag+Ag dataset

"

| 1 + Centrality determination based on number of hits in the ToF and RPC detectors

Int Selected centrality class: 10-40 \%
" disposal within this class
"In' Additional track cuts are used to purify the data (details in backup)

HADES p vs. β distribution

Identification of $K^{ \pm}$

InIt Mass spectrum from time-of-flight measurement shows Gaussian peak around $K^{ \pm}$mass

IUI Background modelled with polynomial of 3 rd degree $\left(K^{+}\right)$or exponential $\left(K^{-}\right)$

Ins Independent fits in p_{T}, y_{0} and $\Delta \phi$ bins yield a 3D phase-space distribution of K^{+}mesons
|nut Signal measurement must be sensitive to small variations in kaon signal!

Raw $p_{t}: y$ distributions of $K^{ \pm}$mesons

NII $8.6 \cdot 10^{6}$ of K^{+}and $6.7 \cdot 10^{5}$ of K^{-}reconstructed - no efficiency correction
HADES provides a very wide acceptance for both particles

Fourier analysis

nut The $\Delta \phi$ distribution for given p_{t} and y_{0} is used to obtain flow coefficients
"II* For this cell, $v_{1}=-0.0149 \pm 0.0015$ and $v_{2}=-0.0122 \pm 0.0016$.

Directed flow (v_{1}) of $K^{ \pm}$as function of y_{0}

InI Note: track occupancy effects are not yet corrected.

Directed flow (v_{1}) of $K^{ \pm}$as function of p_{T}

|n' Note: track occupancy effects are not yet corrected!

Elliptic flow (v_{2}) of $K^{ \pm}$as function of y_{0}

|nI Note: track occupancy effects are not yet corrected!

Elliptic flow (v_{2}) of $K^{ \pm}$as function of p_{T}

IIII Note: track occupancy effects are not yet corrected!

Jan Orlinski
Faculty of Physics, University of Warsaw
(

Summary and outlook

nut Kinematic distributions of $K^{ \pm}$mesons were studied in three dimensions
num Distributions in the $\Delta \phi$ variable were used to study the transverse flow effect of these particles

Nut $v_{1}(y)$ for $K^{ \pm}$mesons with low transverse momenta shows strong 'antiflow' compared to protons - result of repulsion of kaons by nuclear matter...?
|"ll PhD project in progress:
metrack occupancy correction and evaluation of systematic errors
nil* compare the results to state-of-the-art transport models
nill extend analysis to other strange hadrons (K_{S}^{0}, Λ, ϕ)

Thank you for your attention!

BACKUP SLIDES

Relativistic momentum phase space

Nult Rapidity $y_{i} \equiv \operatorname{atanh}\left(\beta_{i}\right)$,
where $\beta_{i}=\frac{v_{i}}{c}$
nult "Usual" description of spectra is two-dimensional:

$$
\begin{aligned}
& p_{T} \equiv\left|\overrightarrow{p_{T}}\right| \\
& y \equiv y_{Z}
\end{aligned} \quad y_{0}=\frac{y-y_{C M}}{y_{C M}}
$$

Notice! We collapse 3D \rightarrow 2D. Information about the ϕ angle
 is lost in such an approach.

Track selection

Particle	K^{+}		K^{-}	
META detector	RPC	ToF	RPC	ToF
χ^{2} of p reconstr. Meta matching Q N. MDC Layers dist to vertex $m\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	$\begin{gathered} \leq 100 \\ \leq 2 \\ >19 \\ \leq 20 \\ \in(340,660) \end{gathered}$			
$p[\mathrm{MeV} / \mathrm{c}]$	$\in(200,1200)$	$\in(150,900)$	$\in(200,950)$	$\in(200,800)$
$\begin{aligned} & \mathrm{dE} / \mathrm{dx} \text { (MDC) [a.u.] } \\ & \mathrm{dE/dx} \text { (MDC) }{ }^{*} \mathrm{p} \text { [a.u.] } \\ & \mathrm{dE} / \mathrm{dx} \text { (ToF) }{ }^{*} \beta \gamma \text { [a.u.] } \end{aligned}$	$\in(1,9)$	$\begin{aligned} & \in(1.1,17) \\ & \in(580,3000) \\ & \in(0.25,3.2) \end{aligned}$	$\in(800,2500)$	$\begin{aligned} & \in(2,5) \\ & >900 \\ & \in(1,2.5) \end{aligned}$

FOPI results of $K^{ \pm}$flow

Phys.Rev.C 90 (2014) 025210

