Jan Orlinski for the HADES Collaboration

Analysis of charged kaon flow in Ag+Ag collisions registered with HADES

The 21st International Conference on Strangeness in Quark Matter

5th of June, 2024 Strasbourg, France

FACULTY OF PHYSICS UNIVERSITY OF WARSAW

- I. Transverse flow introduction and motivation
- 2. The HADES experiment
- 3. Experimental details
- 4. Identification and p_T : y distribution of K^{\pm} mesons
- 5. Preliminary flow patterns of K^{\pm} mesons
- 6. Summary and outlook

The ϕ azimuthal angle in heavy-ion collisions

- The azimuthal angle matters in describing momenta of particles emitted from heavy ion collisions
- The distributions in this angle are not isotropic!
- Anisotropies of these distributions are called the transverse flow (also called the anisotropic or the collective flow)
- Caused by non-spherical geometry of the collision and effects of collisions dynamics

<u>S. Voloshin et al., arXiv:0809.2949 [nucl-ex] (2008)</u>

Sensitivity of flow to physical effects

- Significant extension of our current understanding of RHIC's
 - v_n often reported in small or partly integrated phase space regions
 - HADES provides large acceptance and statistics!
- Azimuthal angle distribution sensitive to properties of nuclear matter (NM):
 - Equation of State of the NM
 - Interactions within NM, and its interaction with produced particles
 - Good observable for transport models comparisons!
- Why strange particles?
 - Near-threshold production \rightarrow they act as probe particles
 - Strangeness conservation
 - Significant Kaon-Nucleon potential predicted

High Acceptance Di-Electron Spectrometer

- Installed at the SIS18 accelerator at GSI (Darmstadt, Germany)
- Measures products of A+A as well as p+A, p+p and $\pi+A$ collisions
- 0.2 4.5 GeV/nucleon energy regime;
- Part of FAIR Phase-0 program (SIS-100 accelerator under construction)

G. Agakichiev et al. (HADES Collaboration), Eur. Phys. J. A 41, 243 (2009)

Previous flow reports from HADES

Event-plane reconstruction

Measurement of flow

The azimuthal angle distribution can be described with a Fourier series:

$$\frac{dN}{d\Delta\phi} = \mathcal{N}\left(1 + 2\sum_{n} v_n \cos(n\Delta\phi)\right)$$

The goal of flow analysis is to obtain maps of $v_{1,2,...}(p_t, y_0)$

- Notice:
 - v_1 is called directed flow and v_2 is called elliptic flow
 - collision symmetry enforces $v_1(y) = -v_1(-y)$ from which follows that $v_1(y_{CM}) = 0$

Event-plane reconstruction resolution

- Standard method by J.-Y. Ollitrault was used to correct for the finite resolution of event plane reconstruction (J.-Y. Ollitrault, arXiv:9711003 [nucl-ex])
 Event plane reconstruction resolution
- Divide the spectators into two random sub-events (A and B) and evaluate $\Delta \Psi_{AB} = \Psi_A - \Psi_B$
- Resolution for *n*-th harmonic is:

where

 $I_k(x)$ is the modified Bessel function of the first kind and $\chi^2 = -2 \ln \left(\frac{2 \cdot \Delta \Psi_{AB} (90^\circ - 180^\circ)}{\Delta \Psi_{AB} (0^\circ - 180^\circ)} \right)$

21st SOM 2024

5.06.2024

Ag+Ag dataset

Ag+Ag collisions at 1.58A GeV energy – 30 days of statistics used;

- Centrality determination based on number of hits in the ToF and RPC detectors
- Selected centrality class: 10-40 %
- About $2.6 \cdot 10^9$ collisions at disposal within this class
- Additional track cuts are used to purify the data (details in backup)

Jan Orlinski Faculty of Physics, University of Warsaw

HADES p vs. β distribution

Faculty of Physics, University of Warsaw

Page 11 of 24

Identification of K^{\pm}

- Mass spectrum from time-of-flight measurement shows Gaussian peak around K[±] mass
- Background modelled with polynomial of 3rd degree (K^+) or exponential (K^-)
- Independent fits in p_T , y_0 and $\Delta \phi$ bins yield a 3D phase-space distribution of K^+ mesons
- Signal measurement must be sensitive to small variations in kaon signal!

Raw p_t : y distributions of K^{\pm} mesons

■ 8.6 · 10⁶ of K^+ and 6.7 · 10⁵ of K^- reconstructed — no efficiency correction

HADES provides a very wide acceptance for both particles

Fourier analysis

The $\Delta \phi$ distribution for given p_t and y_0 is used to obtain flow coefficients

For this cell, $v_1 = -0.0149 \pm 0.0015$ and $v_2 = -0.0122 \pm 0.0016$.

Directed flow (v_1 **) of** K^{\pm} **as function of** y_0

Note: track occupancy effects are not yet corrected.

Directed flow (v_1 **) of** K^{\pm} **as function of** p_T

Note: track occupancy effects are not yet corrected!

Jan Orlinski Faculty of Physics, University of Warsaw

Elliptic flow (v_2) of K^{\pm} as function of y_0

Note: track occupancy effects are not yet corrected!

Jan Orlinski Faculty of Physics, University of Warsaw

Page 17 of 24

Elliptic flow (v_2 **) of K^{\pm} as function of** p_T

Note: track occupancy effects are not yet corrected!

Jan Orlinski Faculty of Physics, University of Warsaw

Page 18 of 24

Summary and outlook

- Kinematic distributions of K^{\pm} mesons were studied in three dimensions
- \blacksquare Distributions in the $\Delta\phi$ variable were used to study the transverse flow effect of these particles
- $w v_1(y)$ for K^{\pm} mesons with low transverse momenta shows strong 'antiflow' compared to protons result of repulsion of kaons by nuclear matter...?
- PhD project in progress:
 - track occupancy correction and evaluation of systematic errors
 - compare the results to state-of-the-art transport models
 - \blacksquare extend analysis to other strange hadrons (K_S^0, Λ, ϕ)

Thank you for your attention!

BACKUP SLIDES

Relativistic momentum phase space

Rapidity
$$y_i \equiv \operatorname{atanh}(\beta_i)$$
,
where $\beta_i = \frac{v_i}{c}$

"Usual" description of spectra is two-dimensional:

$$p_T \equiv |\vec{p}_T|$$

$$y \equiv y_Z$$

$$y_0 = \frac{y - y_{CM}}{y_{CM}}$$

Notice! We collapse $3D \rightarrow 2D$. Information about the ϕ angle is lost in such an approach.

Track selection

Particle	K^+		K^{-}	
META detector	RPC	ТоҒ	RPC	ТоҒ
χ^2 of p reconstr. Meta matching Q N. MDC Layers dist to vertex m [MeV/c ²]	≤ 100 ≤ 2 > 19 ≤ 20 ∈ (340, 660)			
p [MeV/c]	∈ (200, 1200)	∈ (150, 900)	∈ (200, 950)	∈ (200, 800)
dE/dx (MDC) [a.u.] dE/dx (MDC) * p [a.u.] dE/dx (ToF) * $\beta\gamma$ [a.u.]	∈ (1, 9) - -	 ∈ (1.1, 17) ∈ (580, 3000) ∈ (0.25, 3.2) 	- ∈ (800, 2500) -	∈ (2, 5) > 900 ∈ (1, 2.5)

FOPI results of K^{\pm} **flow**

Jan Orlinski Faculty of Physics, University of Warsaw

Page 24 of 24

21st SQM 2024 5.06.2024