Fast Data Processing & Autonomous Detector Control ---- for sPHENIX and future EIC detectors

Huan Zhong Huang Department of Physics and Astronomy, UCLA for the sPHENIX Collaboration and the FastML Team SQM 2024, Strasbourg, France

Our playground for p+p collisions

ZDCs on either side of IR

sPHENIX Readout Scheme

- RHIC pp collision rate is 3 MHz
- sPHENIX calorimeter DAQ max. rate is 15 kHz
 - Limits sPHENIX to recording ~0.5% of triggered protonproton collisions
- Trackers are all streaming readout (SRO) capable
 - TPC dominates data rate, can't save all streamed data
 - 10% trigger-enhanced SRO increases open HF MB rate \sim 300 kHz

Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors

A proposal submitted to the DOE Office of Science April 30, 2021

- Stream MVTX and INTT Data to AI/ML Branch and Determine if reconstructable HF Topology is present;
- If Yes, Send tag downstream to enable Tracking Detector Readout
- Allows us to sample almost 100% of p+p collisions for rare HF physics

Block for AI/ML based decision making

SPHE

AI HF selections

- Question: Can ML do better for selecting HF decays over conventional selections?
- Challenges: Decision time, Must run online, in FPGA. Hence variables must be "simple"

- Developed algorithms as Graph Neural Networks (GNN)
- Advantageous over Convolutional Neural Networks (CNN) by adding edge information
- Algorithms deployed at several points on FPGAs:
- 1. Data decoding Conventional logic
- 2. Hit clustering Conventional logic
- 3. Fast tracking Machine learning
- 4. Topological separation of HF signal from background Machine learning

Feedback algorithms

- Tracking algorithms developed using simulated signal and background events in the MVTX and INTT
- Used these models to feed into physics selection models to select interesting events
 - Models are bi-directional, local information is passed to global and global information is passed back to local to refine
- Initial trainings and models are developed on GPU
 - NVIDIA Titan RTX, A5000, and A6000
 - Will take the model and convert it to IP block for FPGA deployment
 - Models developed with PyTorch and PyTorch Geometric

Tagging with machine learning

Graph Neural Net design

- Track node input vectors
 - 1. 5 hits (MVTX + INTT)
 - 2. Length of each segment: $L = |\overrightarrow{x_{i+1}} \overrightarrow{x_i}|$
 - 3. Angle between segments
 - 4. Total length of segments
- Aggregators
 - 1. Primary vertex
 - 2. Secondary vertex
- Current ML tracklet algorithm has
 - Accuracy > 91% for building tracks
 - Area under receiver-operating characteristic curve (AUC) > 97% liken to "probability of combining the correct track elements compared to incorrect elements" – random chance is 50%
 - Purity and rejection studies are underway

ECML PKDD 2022, Sub 1256

pT estimation

R

- A feed-forward neural net is used to predict the pT
- Uses least-squares method to estimate track radius
- ~15% improvement in tracking with pT estimation

0

Mode
Set Transfe
GarNe
PN+SAG
BGN-S

Model	#Parameters	Accuracy	AUC	# Parame	ters Accuracy	AUC
ransformer	$300,\!802$	84.17%	90.61%	300,41	8 69.80%	76.25%
arNet	$284,\!210$	90.14%	96.56%	284,06	6 75.06%	82.03%
SAGPool	$780,\!934$	86.25%	92.91%	$780,\!673$	69.22%	77.18%
GN-ST	$355,\!042$	92.18%	$\mathbf{97.68\%}$	$354,\!78$	6 76.45%	83.61%
		LS	5	MI	Ъ	
	Hidden dim	Accuracy	AUC	MI Accuracy	AUC	
	Hidden dim	Accuracy 91.52%	5 AUC 97.33%	MI Accuracy 91.48%	LP AUC 97.31%	
	Hidden dim 32 64	LS Accuracy 91.52% 92.18%	5 AUC 97.33% 97.68%	MI Accuracy 91.48% 92.23%	LP AUC 97.31% 97.73%	
	Hidden dim 32 64 128	Accuracy 91.52% 92.18% 92.44 %	5 AUC 97.33% 97.68% 97.82%	MI Accuracy 91.48% 92.23% 92.49%	AUC 97.31% 97.73% 97.86%	

with LS-radius

without radius

Hardware design

- Decision hardware is currently a BNL-712 FELIX board
 - Same as deployed at sPHENIX for ease of integration
 - Team can successfully transfer data from BNL-712 to KC-705 evaluation board
- Ongoing work on reducing resource usage

From Development to Firmware Implementation

Decoding for MVTX

- Entire decision making must be performed in roughly 10 μs to allow recording of TPC hit
 - Parallelization of complex tasks in necessary to achieve this
- MVTX alone consists of 432 pixel chips with > 500k pixels / chip
 - 48 staves x 9 chips / stave
- Luckily, occupancy is low, ~ 20 hits / chip / collision for proton-proton collisions
- Each chip's information is sent to its own decoder to find active pixels

Clustering of MVTX pixels

- ALPIDE reads data out in double columns from 0 to 1023
 - Decoded hits thus arrive double column-by-double column
- Clusters can be assembled as they arrive
 - No hits in the next columns three adjacent pixels means cluster is ready to be sent out
- After finding pixel with centroid, pixel can be divided into grids to improve resolution using only 2 more bits
- Can get 13.5 μm cluster resolution at the global level from 31 bits
 - 6 bits to define layer and sensor number
 - 4 bits to define chip number on the sensor
 - 21 bits for cluster position on chip (9 for row, 10 for column, 2 for quadrant)
- After changing to global cluster position, detector layout has become abstracted

SPHE

Putting it all together

• Tracking GNN has been synthesis and benchmarked on <u>Alveo U280 accelerator card</u>

Look up tables	14.9% (194k)
Flip flops	8.2% (214k)
Block RAM	20.2% (406)
Digital signal processing	5.4% (488)

- Processing time is undergoing rapid improvements
 - 380 µs in August 2023
 - ~9 μs in May 2024
- Second stage of the algorithm uses tracks to construct secondary vertices, a signature of particle decays

Felix board will be used

Secondary vertex finding with sim. $D^0\to K^-\pi^+$ signal and random background for 1% sig. to bkg. tuning

Bkg. track rejection	Signal eff.	Sample purity*
90%	72.5%	7.25%
95%	48.9%	9.78%
99%	15.0%	15.0%

* % of final events with signal you're looking for

We expect to deploy the AI/ML decision module in the summer of 2024

The tracking detectors' AI/ML aided stream readout will greatly benefit the sPHENIX scientific program for rare particles in 2024 p+p run

The FastML Team will extend the development of the project for future EIC

The FastML Team

- Cross-discipline group of computer scientists, engineers and physicists
- Formed in 2020 from DE-F0A-0002490
- Consists of groups from
 - Los Alamos National Laboratory
 - Massachusetts Inst. of Technology
 - New Jersey Institute of Technology
 - Fermilab
 - Oak Ridge National Laboratory
 - Stony Brook
 - Georgia Institute of Technology
 - University of North Texas
 - Central China Normal University

19

sPHENIX

<image/>	Hadronic Calorimeters	First run year	2023
	Electromagnetic Calorimeter	$\sqrt{s_{ m NN}}$ [GeV]	200
	Time Projection Chamber (TPC)	Trigger Rate [kHz]	15
	Intermediate Tracker (INTT) Minimum Bias Detector (MDB) MicroVertex Detector (MVTX)	Magnetic Field [T]	1.4
		First active point [cm]	2.5
		Outer radius [cm]	270
		η	≤1.1
	TPC Outer Tracker (TPOT)	z _{vtx} [cm]	10
	(N(AuAu) collisions*	1.43x10 ¹¹
		* In 3 years of ru	nning

20

Tracking at sPHENIX

- Tracking consists of 3 sub-detectors:
 - Pixel Vertex Detector (MVTX)
 - Intermediate Silicon Tracker (INTT)
 - Time Projection Chamber (TPC)
- MVTX and INTT are both capable of streaming readout
- Combined tracking to r = 10.3 cm

Heavy flavor at the EIC

- Why?
 - Main HF production is through photon-gluon processes
 - Good probe of gluon parton distribution function

Development of Tagging with machine learning

- Algorithms must have low latency and resource use
- hls4ml translates NN algorithms into high level synthesis
- Also generates IP cores for easy implementation
- Rest of firmware can be built around IP core to calculate algorithm response

Server for algorithm conversion and FW generation

FELIX card (712) on server for FW testing

SPHENIX

Overview of Data Process/Readout Scheme SPHENIX MVTX FELIX cards (x6) Global sPHENIX timing device info. Detector Rx Tx Data Electrical Data To storage Input over PCIe processing Tx Decision module (x2) **Electrical Output** INTT FELIX cards (x8) Global Decision Rx info. Algorithm Tx Geometry Data To storage Detector sorter Tracking over PCIe tagging processing Detector Rx Algorithm Data Layer/sensor sorter Clusterizer TPC FELIX cards Global info. Chip sorter Decoder Detector Data To storage Turing surter DEPORE Rx The second se over PCIe Data processing

GNNs with set transformers

The cycle

- 1. Track information is initially defined
- 2. This is relayed to all primary and secondary vertex information
- 3. Weights are assigned to each link
- 4. The PV and SV information go through a feedforward NN
- 5. This updates the track information