

AN ELECTRO-MAGNETIC PHENOMENOLOGY OF THE EARLY STAGES

Oscar Garcia-Montero

Fakultät für Physik Universität Bielefeld

GARCIA@PHYSIK.UNI-BIELEFELD.DE

In collaboration with Philip Plaschke, Aleksas Mazeliauskas and Soeren Schlichting

+ based on JHEP 03 (2024) 053 and 2403.04846

Bundesministerium für Bildung und Forschung

THE TENOUSLY THERMAL QGP

Heavy-Ion Collisions create an Isolated Quantum System

which is — Initially far away from any equilibrium

Expanding against the vacuum

• A system battling to thermalize against all odds.

ELECTROMAGNETIC PROBES

- Photons/Dileptons are a unique way of probing the system
 - No strong interactions
 - Mean free path in medium > medium size
 - Photons escape, virtually unscathed
- Photons are particularly sensitive to the evolution of the system

KEY MESSAGE TODAY

The dynamics and evolution of the pre-equilibrium phase of HICs can be accessed based on a phenomenology of the electromagnetic probes.

QCD KINETIC THEORY

Dynamics described by relativistic Boltzmann equation

Elastic $2 \leftrightarrow 2$ scattering screened by Debye mass

$$p^{\mu}\partial_{\mu}f(x,p) = C_{2\leftrightarrow 2}$$

Equilibration controlled by single relaxation rate

$$\tau_R(\tau) = 4\pi(\eta/s)/T_{eff}(\tau)$$

• Evolution time:

$$\tilde{w} = \frac{\tau}{\tau_R(\tau)} = \frac{\tau T_{eff}(\tau)}{4\pi \eta/s}$$

 \Rightarrow Hydrodynamics applicable on timescales of the order of unity in rescaled time

 $2[f] + C_{1\leftrightarrow 2}[f]$

[Arnold et al., JHEP 0301, (2003)]

Collinear 1↔2 including Landau-Pomeranchuk-Migdal (LPM) effect via

[Kurkela et al., Phys.Rev.C 99 (2019)]

RELEVANT PROCESSES AT LEADING ORDER

Leading order production rates can be derived from effective kinetic theory

[Arnold et al., JHEP, (2001)]

$$p^{\mu}\partial_{\mu}f(x,p) = C_{2\leftrightarrow 2}[f] + C_{1\leftrightarrow 2}[f]$$

► 2↔2 processes include Compton scattering and elastic pair annihilation

 Collinear effective 1↔2 processes in order to capture Landau-Pomeranchuk-Migdal (LPM) effect via effective vertex resummation

Inelastic pair annihilation

Bremsstrahlung off q & \bar{q}

QCD KINETIC THEORY

Quarks produced

System initially highly anisotropic \rightarrow peak at $\cos\theta \approx 0$ represents $p_L \ll p_T$

PHOTON - p_T - Spectrum

• Hard p_T -regime produced at early times

• Early time production ($\tilde{w} \leq 0.5$) suppressed due to absence of quarks

 Competition between increase of noneq. photon production rate relative to thermal rate and rapid cooling of pre-eq. QGP
 ⇒ smooth convergence to thermal

photon rate

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \Big(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} t^{1/3}) \Big) + (T\tau^{1/3} t^{1/3} t^{1/3$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

- Competing effects: cooling dynamics and quark production
 reflected in time integrated pre-eq. photon spectrum
- Suppression wrt to "ideal" photon spectrum (thermal equilibrium throughout evolution)
- Universal scaling of pre-eq photon spectrum in terms of shear viscosity η/s and entropy density $T\tau^{1/3} \sim (\tau s)_{eq}^{1/3}$ \Rightarrow valid for each theory with energy attractor

$$\frac{dN}{d^2 x_T d^2 p_T dy} = (\eta/s)^2 \tilde{C}_{\gamma}^{ideal} \mathcal{N}_{\gamma} \left(\tilde{w}, \sqrt{\eta/s} p_T / (T\tau^{1/3} v_T)^2 \tilde{v}_{\gamma}^{ideal} \right)$$

RESULTS - PHENOMENOLOGY

- Compute pre-eq. photon production by matching scaling form of pre-eq. photon spectrum to event-by-event fluctuations of the energy density profile
- Matching is performed by using "external" h and scaling time, $\tilde{w}_{match} = T_{hyd} \tau_{hyd} / (4\pi \eta / s)$.

Vary matching times. Robust under assumptions

hydro parameters
$$(\tau^{1/3}T)_{\infty}(x_T) = \tau_{hyd}^{1/3} \left(T_{hyd}(x_T) + \frac{2}{3} \frac{\eta/s}{\tau_{hyd}} \right)$$

S:

$$\langle \tilde{w}(\tau_{\text{hydro}} = 0.6 \,\text{fm}) \rangle = 1.002$$

 $\langle \tilde{w}(\tau_{\text{hydro}} = 1 \,\text{fm}) \rangle = 1.45$

PHOTONS - PHENOMENOLOGY

Background evolution obtained from VISH2+1 hydro with η/s =0.08 tuned to 0-20% PbPb collisions at 2.76TeV [Garcia-Montero et al., *Phys.Rev.C*, (2020)]

• Above $p_T \approx 3$ GeV pre-equilibrium production dominates in- medium photon production

Sensitivity to initialisation time and initial conditions.

DILEPTON PRODUCTION

LO dilepton production is effective 2-2 via quark annihilation

Analytically and numerically (EKT) found scaling for dileptons

$$\frac{dN_{\parallel}}{dMdy} = (\eta/s)^2 \,\tilde{C}_{\gamma}^{ideal} \,\mathcal{N}_{\parallel} \left(\tilde{w}, \sqrt{\eta/s} \,M/(\tau^{1/3}T)^3/2_{\infty}\right)$$

[Garcia-Montero et al. 2403.04846]

11

DILEPTON PRODUCTION

LO dilepton production is effective 2-2 via quark annihilation

Analytically and numerically (EKT) found scaling for dileptons

$$\frac{dN_{\parallel}}{dMdy} = (\eta/s)^2 \,\tilde{C}_{\gamma}^{ideal} \,\mathcal{N}_{\parallel} \left(\tilde{w}, \sqrt{\eta/s} \,M/(\tau^{1/3}T)^3/2_{\infty}\right)$$

[Garcia-Montero et al. 2403.04846]

11

RESULTS - PHENOMENOLOGY

Pre-eq. dilepton production event-by-event using a background evolution obtained from *Trajectum* tuned to 0-20% PbPb collisions at 5.02 TeV

[Giacalone et al. Phys. Rev. Lett. 131, 202302 (2023)]

 Comparison of EbE dilepton to a homogeneous and Coarse grained (CG) background

[Coquet et al. Phys. Lett. B 821, 136626 (2021)]

Pre-equilibrium production relevant between
 $p_T \sim 2-5 \, {\rm GeV}$

SUMMARY AND CONCLUSIONS Pre-equilibrium photon and dilepton production rates computed from QCD KT

Universal scaling for different couplings in time integrated photon p_T -spectrum Analogous scaling for dileptons in $M_{\rho\rho}$

> *Implemented:* dilepton/photon production into KøMPøST (git-branch: ShinyKøMPøST)

Next: Comprehensive exploration of EM probe observables, (e.g. dilepton) polarisation, etc) for a new phenomenology of the early stage.

RESULTS - PHENOMENOLOGY

Total in medium contribution (EKT+Thermal) is relatively unchanged

> In medium yield robust w.r.t. switching time!

COMPARISON TO SEMI-ANALYTICAL AMY RATES

ELECTROMAGNETIC ENERGY LOSS RATE

Non-equilibrium photon rate compared to thermal energy rate

Energy rate:

$$\partial_{\tau} e_{\gamma}(\tau) = \int \frac{d^3 p}{(2\pi)^3} \ p C_{\gamma}(\tau, \vec{p})$$

where:

$$C_{\gamma} = \frac{dN}{\tau d\tau d^3 p d^2 x_T}$$

Recover thermal energy rate on timescales when hydrodynamics becomes applicable

$$\tilde{w} = \frac{\tau T_{eff}(\tau)}{4\pi\eta/s} = 0.076$$

RESULTS - 2D SPECTRUM

$$\tilde{w} = \frac{\tau T_{eff}(\tau)}{4\pi\eta/s} = 0.2$$

RESULTS - 2D SPECTRUM

$$\tilde{w} = \frac{\tau T_{eff}(\tau)}{4\pi\eta/s} = 0.5$$

RESULTS - 2D SPECTRUM

• Peak at $\cos\theta \approx 0$: Gluon distribution highly anisotropic at early times

$$\tilde{w} = \frac{\tau T_{eff}(\tau)}{4\pi\eta/s} = 1.0$$

RESULTS - 2D SPECTRUM

Peak at $\cos\theta \approx 0$: Gluon distribution highly anisotropic at early times

As quarks get created → non-eq. rate approaches thermal production rate

$$\tilde{w} = \frac{\tau T_{eff}(\tau)}{4\pi\eta/s} = 3.86$$

RESULTS - 2D SPECTRUM

• Peak at $\cos\theta \approx 0$: Gluon distribution highly anisotropic at early times

As quarks get created → non-eq. rate approaches thermal production rate

