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Open quantum systems

System + environment

ρ(t) = ρQQ̄ ⊗ ρQGP

Evolution of the total system

ρ(t ′) = U(t ′, t)
[
ρQQ̄ ⊗ ρQGP

]
U(t ′, t)†

System (QQ̄ pair)

ρQQ̄(t)

Evolution of the system

ρQQ̄(t
′) = TrQGP

[
U(t ′, t)ρ(t)U(t ′, t)†

]

d
dt ρ = −i[H, ρ]

d
dt ρQQ̄ = LρQQ̄

Trace out environment degrees of freedom
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Quantum Master Equation (Quantum Brownian Regime)

d
dt

(
Ds
Do

)
= L

(
Ds(s,s′, t)
Do(s,s′, t)

)

L =

(
Lss Lso
Los Loo

)

singlet-octet
transitions

octet density
operator

singlet density
operator

subleading but
necessary for
positivity

L = L0 + L1 + L2 + L3 + L4

L0 : Kinetic terms

L1 : Static screening (V)

L2 : Fluctuations (W)

L3/L4 : Dissipation (W’/W”/W”’)

Dynamical
processes

S.D, P-B. Gossiaux, T. Gousset, R. Katz, J-P. Blaizot, 2402.04488

(accepted for publication in JHEP)
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1D Potential

▶ Based on a 3D potential inspired from Lattice results D. Lafferty, A. Rothkopf (2020)

▶ Real part: parametrization to reproduce 3D mass spectra
▶ Imaginary part: separated in a coulombic and string part, aims at reproducing 3D

decay widths R. Katz, S.D, P-B. Gossiaux (2022)
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cc evolution at fixed temperature

▶ Initial singlet in-medium 1S
state at T = 300 MeV

▶ Octet populated via
dipolar transitions

▶ Repulsive octet potential
⇒ delocalization

▶ Delocalization in singlet
channel via transitions

▶ Surviving central peak
in singlet channel

▶ Non-diagonal elements
(width equal to λth = 1√

MT
)
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cc evolution at fixed temperature
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▶ Instantaneous projections on
vacuum eigenstates

▶ In-medium 1S state very close
to vacuum (p1S,v(0) ≈ 0.95)

▶ Complex evolution of p2S
(coupling to other states
+ decay to continuum)

▶ Delayed appearence of 1P states
(chain of transitions at 3rd order
in perturbation theory)

▶ Global evolution towards asymptotic
values (dashed horizontal lines)
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Temperature dependence

T=300 MeV
T=600 MeV
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▶ ρs(r , t) = Ds(r , r , t)
▶ Density reaching box boundaries

between 5 and 10 fm/c
⇒ Level off to asymptotic value

▶ At 20 fm/c: stationnary pedestal at
large distances with trace of bound
state at small distances

▶ T = 600 MeV: harder and more
frequent collisions ⇒ faster increase
of relative distance

▶ Central peak disappears faster than
at 300 MeV, no peak after 5 fm/c
(potential not binding at 600 MeV)
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Temperature dependence

T=200 MeV
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▶ Initial singlet vacuum 1S state
▶ Exponential decay of p1S

▶ Growth of p1P /p2S followed
by global decay

▶ Faster evolution with increasing T
▶ Close asymptotic values as T

increases (Ds nearly diagonal)
▶ Oscillations of p2S disappear for

T ≥ 300 MeV (overdamped regime)
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Hierarchy of operators in different regimes
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⟨Lk ⟩ =∑
i,i′ |L

ss
k [Ds] + Lso

k [Do]|i,i′ +
(
N2

c − 1
)
|Los

k [Ds] + Loo
k [Do]|i,i′∑

i,i′ |Ds|i,i′ +
(
N2

c − 1
)
|Do|i,i′

▶ Clear hierarchy at T = 200 MeV
▶

〈
L0,1

〉
≥ ⟨L2⟩ until ≈ 12 fm/c

⇒ Quantum mechanical evolution
▶ Effect of L1 less and less impactful
▶ ⟨L2⟩ ∼ ⟨L3⟩ ⇒ Equilibrium
▶ Marginal L4 contribution
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Comparison of states populations early time evolution

T = 300 MeV
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▶ Dashed lines: ṗnS(σ, 0) = −ΓnSpnS(σ, 0)
▶ Full lines: analytical solution with L2 only
▶ Points: Full QME results
▶ Good agreement between QME

and "L2-only" evolution around σ = σ1S

▶ Very different results between
dashed and full curves: quantum effects

▶ Positive derivative for 2S
completely absent from dashed curves

Initial
compact gaussian

Initial
vacuum 1S

Initial
in-medium 1S
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Bottomonium system

▶ 3 different initial states:
• Υ(1S)-like initial state

• Υ(2S)-like initial state

• Mixture of S and P states:

Ψ(x) ∝ e− x2

2σ2
(
1 + aodd

x
σ

)
σ = 0.045 fm aodd = 3.5

▶ 4 different medium settings
• Fixed temperature T = 400 MeV

• Average temperature profiles obtained from
EPOS4 for three different centrality classes:
0-10%, 20-30% and 40-50%
with |y | < 2.4 (CMS conditions)

0-10%

20-30%40-50%

2303.17026
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Bottomonium dynamics at fixed temperature
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▶ Similar evolution
to charmonium

▶ 1S-like reduced
by a factor 100

▶ Factor 2 between
1S and 2S

▶ Similar final state

▶ Similar 2S/1S ratio

▶ Lower initial populations

▶ 1S (2S) evolution similar to the
evolution with the 1S (2S)
initial state
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Bottomonium dynamics in a dynamical medium
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▶ Reduction of suppression for more peripheral profiles
▶ 3S not much more suppressed than 2S for more central collisions

≈ 50%

≈ 5%≈ 5%
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Semi-classical approach

▶ Semi-classical approaches can treat multiple pairs

▶ Focus on cc (more affected by recombination)

▶ Case of abelian dynamics ("scalar QCD") as first step towards QCD case as QCD
requires semi-classical treatment of color

▶ Full QME as reference for comparison dDsQCD
dt = dDs

dt

∣∣∣
Ds=Do

▶ Semi-classical treatment not including L4
⇒ "Uncertainty band" for QME results by turning on and off L4 contribution

▶ Real potential regularized for SC approach as the original potential is sharp at the
origin

A. Daddi Hammou, J.-P. Blaizot, S. D, P.-B. Gossiaux and T. Gousset (in preparation)

J.-P. Blaizot and M.-A Escobedo, JHEP 06 (2018) 034
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Comparison with semi-classical results

W (r , p) =
1

2πℏ

∫
dy e− ipy

ℏ
〈

r +
y
2

∣∣∣D̂∣∣∣ r − y
2

〉

▶ Initial vacuum 1S state,
T = 300 MeV

▶ Differences at early times, due to
the presence of quantum effects
absent in semi-classical approach

▶ Very good agreement later on
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Comparison with semi-classical results

▶ Overall good agreement
▶ Differences at high temperatures

due to overheating from QME

▶ Good agreement at high temperatures
▶ Differences at 200 MeV due to quantum

effects. Agreement from ≈ 12 fm/c
Starting temperature from a realistic AA scenario would be high anyways
Small systems (lower T) ⇒ Fewer pairs ⇒ Full quantum treatment possible
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Conclusions and perspectives

▶ Resolution of a quantum master equation in the quantum brownian regime
▶ Study of various temperature regimes, highlighting distinctive features of the QQ

evolution
▶ Direct application to bb: Quantum evolution captures the general trends
▶ Benchmark of semi-classical approach in "scalar QCD" case: overall very good

agreement

▶ Improvements of the QME (treatment of energy gaps)
▶ Study related to the potential (screening for example)
▶ Revisit the phenomenological study of bb with more statistics
▶ Extension of the semi-classical approach to QCD
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Back-up



Quantum Master Equation

L0D = −i [HQ,D]

L1D = − i
2

∫
xx ′

V (x − x ′) [na
xna

x ′ ,D]

L2D =
1
2

∫
xx ′

W (x − x ′) ({na
xna

x ′ ,D} − 2na
xDna

x ′)

L3D = − i
4T

∫
xx ′

W (x − x ′)

(
ṅa

xDna
x ′ − na

xDṅa
x ′ +

1
2
{D, [ṅa

x ,n
a
x ′ ]}

)

▶ na
x : color charge density

na
x = δ(x − r) ta ⊗ I− I⊗ δ(x − r) t̃a

▶ Can recover L3 from L2 by performing:

({na
xna

x ′ ,D} − 2na
xDna

x ′) −→
{(

na
x − i

4T
ṅa

x

)(
na

x ′ +
i

4T
ṅa

x ′

)
,D

}
− 2

(
na

x +
i

4T
ṅa

x

)
D
(

na
x ′ − i

4T
ṅa

x ′

)
▶ Additionnal terms ⇒ L4
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Asymptotic Wigner distribution

▶
√
< p2 > does not scale as√
MT
2 (dotted lines)

▶ Equilibrium limit modified by L4

▶ At large distances, scaling as√
1

1+ γ
2

MT
2 with γ = W̃ (4)(0)

16MT W̃ ′′(0)
(dashed lines)
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