### Multiplicity dependent and inside-jet measurement of light neutral mesons in pp collisions with ALICE

Joshua König for the ALICE collaboration Goethe-Universität Frankfurt

21<sup>st</sup> Conference on Strangeness in Quark Matter Strasbourg, June 3-7, 2024







**FSP** ALICE Erforschung von Universum und Materie





$$E_{d\bar{\sigma}\sigma}^{d\bar{\sigma}\sigma} = \sum_{a,b,c} \mathsf{PDF}_a \otimes \mathsf{PDF}_b \otimes d\sigma_{ab\to cX} \otimes \mathsf{FF}_c^{H}(\mathbf{z}_c, \mathbf{Q})$$

#### Particle production at LHC energies

- Initial state:
  - Invariant cross section of identified particles
- Fragmentation (parton → hadrons)
  - Particle ratios  $(\eta/\pi^0, \omega/\pi^0, ...)$
  - $\rightarrow\,$  Universality of fragmentation function (FF)?

• Collectivity in small systems





$$E_{d\bar{\rho}\sigma}^{d\bar{\sigma}\sigma} = \sum_{a,b,c} \mathsf{PDF}_{a} \bigotimes \mathsf{PDF}_{b} \bigotimes d\sigma_{ab\to cX} \bigotimes \mathsf{FF}_{c}^{H}(z_{c},Q)$$

#### Particle production at LHC energies

- Initial state:
  - Invariant cross section of identified particles
  - Multiplicity dependence of particle p<sub>T</sub> spectra
- Fragmentation (parton → hadrons)
  - Particle ratios  $(\eta/\pi^0, \omega/\pi^0, ...)$
  - $\rightarrow\,$  Universality of fragmentation function (FF)?

- Collectivity in small systems
  - Particle p<sub>T</sub> spectra in high-multiplicity events





$$E_{d\bar{\sigma}\sigma}^{d\bar{\sigma}\sigma} = \sum_{a,b,c} \mathsf{PDF}_a \otimes \mathsf{PDF}_b \otimes d\sigma_{ab\to cX} \otimes \mathsf{FF}_c^H(z_c, Q)$$

#### Particle production at LHC energies

- Initial state:
  - Invariant cross section of identified particles
  - Multiplicity dependence of particle p<sub>T</sub> spectra
- Fragmentation (parton → hadrons)
  - Particle ratios  $(\eta/\pi^0, \omega/\pi^0, ...)$
  - $\rightarrow\,$  Universality of fragmentation function (FF)?
  - Inside-jet meson production:
  - $\rightarrow~$  Direct access to FF
- Collectivity in small systems
  - Particle p<sub>T</sub> spectra in high-multiplicity events





$$E\frac{d^{3}\sigma^{H}}{d\vec{p}} = \sum_{a,b,c} \mathsf{PDF}_{a} \bigotimes \mathsf{PDF}_{b} \bigotimes d\sigma_{ab \to cX} \bigotimes \mathsf{FF}_{c}^{H}(z_{c}, Q)$$

#### Particle production at LHC energies

- Initial state:
  - Invariant cross section of identified particles
  - Multiplicity dependence of particle p<sub>T</sub> spectra
- Fragmentation (parton  $\rightarrow$  hadrons)
  - Particle ratios  $(\eta/\pi^0, \omega/\pi^0, ...)$
  - $\rightarrow\,$  Universality of fragmentation function (FF)?
  - Inside-jet meson production:
  - $\rightarrow~$  Direct access to FF
- Collectivity in small systems
  - Particle p<sub>T</sub> spectra in high-multiplicity events

#### Neutral meson measurement with ALICE

- Measurable over large  $p_T$  range
- $\rightarrow$  Precise probe to study particle production mechanisms (PDF, FF)
- Crucial input for direct photon and dielectron cocktail

Talk on Tuesday, 3:20pm: J. Jung



$$E\frac{d^{3}\sigma^{H}}{d\vec{p}} = \sum_{a,b,c} \mathsf{PDF}_{a} \bigotimes \mathsf{PDF}_{b} \bigotimes d\sigma_{ab \to cX} \bigotimes \mathsf{FF}_{c}^{H}(z_{c}, Q)$$

#### Particle production at LHC energies

- Initial state:
  - Invariant cross section of identified particles
  - Multiplicity dependence of particle p<sub>T</sub> spectra
- Fragmentation (parton  $\rightarrow$  hadrons)
  - Particle ratios  $(\eta/\pi^0, \omega/\pi^0, ...)$
  - $\rightarrow\,$  Universality of fragmentation function (FF)?
  - Inside-jet meson production:
  - $\rightarrow~$  Direct access to FF
- Collectivity in small systems
  - Particle *p*<sub>T</sub> spectra in **high-multiplicity** events

#### Neutral meson measurement with ALICE

- Measurable over large  $p_T$  range
- $\label{eq:precise probe to study particle production} \\ \mbox{mechanisms (PDF, FF)}$
- Crucial input for direct photon and dielectron cocktail

Talk on Tuesday, 3:20pm: J. Jung

### In this talk:

- Inclusive neutral meson cross sections
- Multiplicity dependence
- In-jet meson production





Neutral meson measurement with ALICE



#### Electromagnetic calorimeter (EMC = EMCal + DCal)

- Lead-scintillator calorimeter
- Large acceptance  $|\eta| < 0.7, \Delta \phi \approx 107^\circ + 67^\circ$
- $\rightarrow$  Photon and neutral jet measurement





### Electromagnetic calorimeter (EMC = EMCal + DCal) • Lead-scintillator calorimeter **EMCal** • Large acceptance $|\eta| < 0.7, \Delta \phi pprox 107^\circ + 67^\circ$ $\rightarrow$ Photon and neutral jet measurement TPO **DCal** PHOS

### Photon Conversion Method (PCM)

- Utilizing  $\gamma$  conversion probability of  $\approx$  8%
- $\label{eq:reconstruct} \begin{array}{l} \rightarrow \; {\rm Reconstruct} \; \gamma \; {\rm via} \; e^{\pm} \; {\rm V0\math -tracks} \\ {\rm from} \; {\rm ITS} \; + \; {\rm TPC} \end{array}$
- Excellent energy resolution at low  $p_{\rm T}$ :  $\sigma(E_{\gamma})/E_{\gamma} \approx 1.5\%$

### Photon Spectrometer (PHOS)

- PbWO<sub>4</sub> crystals
- $ightarrow \ \gamma$  measurement
- Fine granularity:  $\pi^0$  decay  $\gamma$  shower separation up to  $p_{\rm T}=$  50 GeV/c

$$\begin{array}{l} \pi^{0}(\eta) \rightarrow \gamma\gamma, \ \mathsf{BR} \approx 98.8\% \ (39.4\%) \\ \pi^{0}(\eta) \rightarrow \gamma e^{+}e^{-}, \ \mathsf{BR} \approx 1.2\% \ (0.7\%) \\ \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \ \mathsf{BR} \approx 89.3\% \end{array}$$

nestamp:2016-11-26 17:56:16(UTC)



# Electromagnetic calorimeter (EMC = EMCal + DCal)

- Large acceptance  $|\eta| < 0.7, \Delta \phi \approx 107^\circ + 67^\circ$
- $\rightarrow$  Photon and neutral jet measurement

### Charged particle measurement

- ITS+TPC
- PID via dE/dx from TPC
- Rec. tracks for charged jet measurement



### Photon Conversion Method (PCM)

- Utilizing  $\gamma$  conversion probability of  $\approx$  8%
- $\label{eq:reconstruct} \begin{array}{l} \rightarrow \; {\rm Reconstruct} \; \gamma \; {\rm via} \; e^{\pm} \; {\rm V0\math -tracks} \\ {\rm from} \; {\rm ITS} \; + \; {\rm TPC} \end{array}$
- Excellent energy resolution at low  $p_{\rm T}$ :  $\sigma(E_{\gamma})/E_{\gamma} \approx 1.5\%$

### Photon Spectrometer (PHOS)

- $\bullet \ \mathsf{PbWO}_4 \ \mathsf{crystals}$
- $ightarrow \ \gamma$  measurement
- Fine granularity:  $\pi^0$  decay  $\gamma$  shower separation up to  $p_{\rm T}=$  50 GeV/c

$$\begin{array}{l} \pi^{0}(\eta) \rightarrow \gamma\gamma, \ \mathsf{BR} \approx 98.8\% \ (39.4\%) \\ \pi^{0}(\eta) \rightarrow \gamma e^{+}e^{-}, \ \mathsf{BR} \approx 1.2\% \ (0.7\%) \\ \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \ \mathsf{BR} \approx 89.3\% \end{array}$$

J. Koenig (IKF Frankfurt)

Neutral meson measurement with ALICE

### Raw signal extraction — Inv. mass based



- Reconstructing signal by combining measured decay particles
- Background subtraction + integration around mass position  $\rightarrow$  Raw yield



# Raw signal extraction — Inv. mass based





- Reconstructing signal by combining measured decay particles
- Background subtraction + integration around mass position  $\rightarrow$  Raw yield

# Raw signal extraction — Purity-based





- Using EMCal clusters containing both  $\pi^{\rm 0}$  decay photons
- $\rightarrow$  Differentiate between merged  $\pi^0$  and single  $\gamma$  clusters via long axis of shower ellipse ( $\sigma^2_{\text{long}}$ )
- $\rightarrow$  High  $\pi^0$  purity (> 70%)

# ', $\eta$ and $\omega$ in pp at $\sqrt{s}=13$ TeV







- Combination of various reconstruction methods
- B = 0.2 T data used to extract  $\pi^0$  down to  $p_T = 0.2$  GeV/c
- Inv. cross section in pp at  $\sqrt{s} = 13$  TeV
  - $\pi^0$ : 0.2 <  $p_T$  < 200 GeV/c
  - $\eta$ : 0.4 <  $p_T$  < 50 GeV/c
  - $\omega$ : 1.5 <  $p_{\rm T}$  < 50 GeV/c

Combination of spectra using BLUE method Nucl. Instrum. Meth. A 270 (1988) 110

NLO calculations from W. Vogelsang

# $\pi^{\rm 0}$ , $\eta$ and $\omega$ in pp at $\sqrt{s}=13~{\rm TeV}$







- Combination of various reconstruction methods
- +  $B=0.2~{
  m T}$  data used to extract  $\pi^0$  down to  $p_{
  m T}=0.2~{
  m GeV}/c$
- Inv. cross section in pp at  $\sqrt{s}=13~{\rm TeV}$ 
  - $\pi^0$ : 0.2 <  $p_T$  < 200 GeV/c
  - $\eta$ : 0.4 <  $p_{\rm T}$  < 50 GeV/c
  - $\omega$ : 1.5 <  $p_{\rm T}$  < 50 GeV/c
- NLO with NNFF1.0 FF describes  $\pi^0$  spectrum
- PYTHIA 8 overestimates and does not describe spectral shape

Combination of spectra using BLUE method Nucl. Instrum. Meth. A 270 (1988) 110.

### Particle ratios



- Measurements in pp at  $\sqrt{s} = 13$  TeV reach up to  $p_{\rm T} = 50~{\rm GeV}/c$
- $\eta/\pi^0$ : No significant dependence on collision energy
- $\omega/\pi^0$ : High  $p_{\rm T}$  constant in pp at  $\sqrt{s} = 13$  TeV lower than previous measurements at lower collision energies

# Multiplicity dependence — $\pi^0$ spectra





- Highest multiplicities (0–0.01%): pprox 5.3 imes (d $N_{ch}/d\eta
  angle_{incl.}$
- $\pi^0$  spectra from  $p_{\rm T}=$  0.4 up to 50–200 GeV/c
- Ratio of  $\pi^0$  spectra in mult. intervals to inclusive

### $\rightarrow$ Hardening of $p_{T}$ spectra with rising multiplicity

### **Comparison to PYTHIA**

- General ordering and magnitude described by PYTHIA
- Slightly different  $p_{T}$  dependence

# Multiplicity dependence of $\eta/\pi^0$





- $\eta/\pi^0$  extracted for all multiplicity intervals
- Hint at multiplicity ordering visible

J. Koenig (IKF Frankfurt)

# Multiplicity dependence of $\eta/\pi^0$



ALICE

- $\eta/\pi^0$  extracted for all multiplicity intervals
- Hint at multiplicity ordering visible
- Slight suppression at low *p*<sub>T</sub> at high multiplicities



J. Koenig (IKF Frankfurt)

# Multiplicity dependence of $\eta/\pi^0$

0-100%



- $\eta/\pi^0$  extracted for all multiplicity intervals
- Hint at multiplicity ordering visible
- Slight suppression at low p<sub>T</sub> at high multiplicities
- $\rightarrow$  Larger fraction of  $\pi^0$  feed-down from heavier particles ( $\eta$ ,  $\omega$ ,  $ho^{\pm}$ )
- $\rightarrow~$  Described qualitatively by PYTHIA





 $\rightarrow$  prompt  $\pi^0$ 

π<sup>0</sup> from ρ<sup>±</sup> decay
 π<sup>0</sup> from n decay

 $\pi^0$  from  $\omega$  decay

**PYTHIA 8.306** 

(Monash 2013)

1.2

E<sup>0.8</sup>

mult, est, with VOM

Neutral mesons inside jets

 $E\frac{d^{3}\sigma^{H}}{d\vec{p}} = \sum_{a,b,c} \mathsf{PDF}_{a} \bigotimes \mathsf{PDF}_{b} \bigotimes d\sigma_{ab \to cX} \bigotimes \mathsf{FF}_{c}^{H}(\mathbf{z}_{c}, \mathbf{Q})$ 





**Observables** 

- Full jet momentum  $\rightarrow Q$
- Correlation of meson inside jet cone with jet momentum  $\vec{a} \sim \vec{a}$

$$ightarrow Z = rac{ec{
ho}_{\pi^0} \cdot ec{
ho}_{jet}}{|ec{
ho}_{jet}|^2}$$

 $\pi^0$  mesons inside jets





- Reconstruction of mesons inside jet cone (R = 0.4)
- Decomposition of  $\pi^0$  spectra into single  $p_{T, jet}$  bins
- → Clear ordering and hardening of meson  $p_T$ -spectra with rising  $p_{T, jet}$
- General ordering and magnitude described
- Contribution to inclusive spectrum peaks at lower  $p_{\rm T}$
- $\rightarrow$  Hint for softer fragmentation in PYTHIA

J. Koenig (IKF Frankfurt)

# $\pi^{\rm 0}$ and $\eta$ mesons inside jets



- Reconstruction of mesons inside jet cone  $(\mathsf{R}=0.4)$
- Decomposition of  $\pi^0$  spectra into single  $p_{\rm T, jet}$  bins
- $\rightarrow$  Clear ordering and hardening of meson  $p_T$ -spectra with rising  $p_{T, jet}$
- Clear dependence on *p*<sub>T, jet</sub>: No universality
- $\rightarrow$  Large fraction of feed down from heavier particles ( $\rho^{\pm}$ ,  $\omega$  and  $\eta$ ) to  $\pi^{\rm 0}$  spectrum

# $\pi^{\rm 0}$ and $\eta$ mesons inside jets



- Reconstruction of mesons inside jet cone  $(\mathsf{R}=0.4)$
- Decomposition of  $\pi^0$  spectra into single  $p_{\rm T, jet}$  bins
- $\rightarrow$  Clear ordering and hardening of meson  $p_T$ -spectra with rising  $p_{T, jet}$
- Clear dependence on *p*<sub>T, jet</sub>: No universality
- $\rightarrow$  Large fraction of feed down from heavier particles ( $\rho^{\pm}$ ,  $\omega$  and  $\eta$ ) to  $\pi^{\rm 0}$  spectrum

# $\pi^0$ and $\eta$ mesons inside jets — Fragmentation





- First measurement of  $\pi^0$  and  $\eta$  fragmentation functions at LHC energies
- For p<sub>T, jet</sub> > 20 GeV/c: Only small dependence on p<sub>T, jet</sub>
- $\eta/\pi^0$  ratio similar for  $p_{\text{T, jet}} > 10 \text{ GeV}/c$  as function of z

# $\pi^{0}$ and $\eta$ mesons inside jets — Fragmentation





J. Koenig (IKF Frankfurt)

Neutral meson measurement with ALICE

# Summary

- $\pi^0$ ,  $\eta$  and  $\omega$  mesons in pp at  $\sqrt{s}=$  13 TeV
  - *p*<sub>T</sub> spectra measured over wide *p*<sub>T</sub> range with small uncertainties
  - Hint at energy dependence of  $\omega/\pi^0$
  - Publications in preparation
- Multiplicity dependence of  $\pi^0$  and  $\eta$  production
  - Precise spectra up to high multiplicities (0-0.01%)
  - Slight multiplicity dependence of  $\eta/\pi^0$
  - ightarrow Driven by feed-down into  $\pi^{0}$
  - Publication in preparation
- $\pi^0$  and  $\eta$  production inside jets
  - Clear dependence of  $\eta/\pi^0$  on  $p_{\rm T, jet}$  as function of  $p_{\rm T, \eta/\pi^0}$
  - ightarrow Driven by feed-down into  $\pi^0$
  - First measurement of fragmentation functions





#### BACKUP

# Collision energy dependence: $\pi^0$ spectra





- x<sub>T</sub> scaling: Universal behavior for x<sub>T</sub>-spectra scaled with √s<sup>n</sup>
- $\rightarrow~n=4.99\,\pm\,0.05$
- Measurement at  $\sqrt{s}=13~{\rm TeV}$  has large overlap in  $x_{\rm T}$  with previous ALICE results
- Universal behavior for  $p_{\rm T}>3~{
  m GeV}/c$  observed



# Collision energy dependence: $\eta$ spectra





- $x_{\rm T}$  scaling: Universal behavior for  $x_{\rm T}$ -spectra scaled with  $\sqrt{s}^n$
- $\rightarrow~n=4.81\,\pm\,0.06$
- Measurement at  $\sqrt{s}=13~{\rm TeV}$  has large overlap in  $x_{\rm T}$  with previous ALICE results
- Universal behavior for  $p_{\rm T}>3~{
  m GeV}/c$  observed



# $\omega$ meson in pp at $\sqrt{s}=13~{\rm TeV}$





J. Koenig (IKF Frankfurt)

Neutral meson measurement with ALICE

### $\eta$ mesons inside jets



- Reconstruction of mesons inside jet cone  $\left(R=0.4\right)$
- Decomposition of  $\eta$  spectra into single  $p_{\rm T, \; jet}$  bins
- ightarrow Clear ordering and hardening with rising  $p_{T, jet}$

- General ordering and magnitude described
- Contribution to inclusive spectrum peaks at lower  $p_{\rm T}$
- $\rightarrow\,$  Hints at softer fragmentation in PYTHIA



# Influence of feed-down to meson spectra on $\eta/\pi^0$





# $\pi^{0}$ and $\eta$ meson $R_{\rm pPb}$ at $\sqrt{s_{\rm NN}}=$ 8.16 TeV



- Published: Phys. Lett. B 827 (2022) (arXiv: 2104.03116)
- Nuclear modification factor of  $\pi^0$  ( $\eta$ ) mesons up to  $p_{\rm T}=200$  (30) GeV/c





- Neutral meson production as function of multiplicity
- $\eta/\pi^0$  inside charged jets as function of meson  $p_{\rm T}$
- $ightarrow \ {\it p_{\rm T, \; jet}} > 10 \; {
  m GeV}/c$
- ightarrow Strong suppression of  $\eta/\pi^0$  observed

# $\omega$ mesons in pp and p-Pb in $\sqrt{s_{NN}} = 5.02$ TeV



 $\frac{d^2 \sigma_{pp}}{d \sigma_{\tau} d v}$ 

p\_ (GeV/c)



• Consistent with previous  $\omega$  and  $\pi^0$  measurements