

U.S. DEPARTMENT OF

Scaling Properties of ϕ -Meson and Light Charged Hadron Production in Small and Large Systems at PHENIX

 \mathcal{O}

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France Rachid Nouicer, for the PHENIX Collaboration Brookhaven National Laboratory

Outline

PHENIX established a comprehensive physics program to study $\varphi\text{-meson}$ and light charged

hadron production in Small (pAl, pAu, dAu, ³HeAu), and Large (CuAu, AuAu, UU) systems:

ϕ meson production in $p+{ m Al},p+{ m Au},d+{ m Au},$ and ${ m ^3He}+{ m Au}$ collisions at $\sqrt{s_{NN}}=200~{ m GeV}$	Measurement of ϕ -meson production in $ m Cu+Au$ collisions at $\sqrt{s_{NN}}=200~ m GeV$ and $ m U+U$ collisions at $\sqrt{s_{NN}}=193~ m GeV$			
U. Acharya et al. (PHENIX Collaboration) Phys. Rev. C 106 , 014908 – Published 26 July 2022	N. J. Abdulameer <i>et al.</i> (PHENIX Collaboration) Phys. Rev. C 107 , 014907 – Published 13 January 2023			
Identified charged-hadron product ${ m Cu}+{ m Au}$ collisions at $\sqrt{s_{NN}}=20$ at $\sqrt{s_{NN}}=193~{ m GeV}$	ation in $p+\mathrm{Al},^3\mathrm{He}+\mathrm{Au},$ and $00\mathrm{GeV}$ and in $\mathrm{U}+\mathrm{U}$ collisions			

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. C **109**, 054910 – Published 20 May 2024

- 1. Identified light charged hadrons production in small and large systems:
 - Freeze-out temperature, ratios, and nuclear modification factors
- 2. ϕ -Meson production in small and large systems:
 - > nuclear modification factors, comparison to symmetric systems, and elliptic flow
- 3. Summary

Charged Hadrons Identification in PHENIX

PH^{*}ENIX

Charged hadrons are detected in the TOF and the DC. The

squared mass of the tracks is determined by:

Invariant Transverse Momentum Spectra vs Centrality Classes

0.5 1

1.5

2

2.5

3

p₋(GeV/c)

0.5

1.5

p_(GeV/c)

1

0.5 1 1.5 2 2.5 3 3.5 4

p_(GeV/c)

Rachid Nouicer

4

τ

RC

109,

05491

0

(2024)

Transverse Mass Spectra

 π , *K*, and *p* spectra have different shapes

and in order to quantify these differences, we look at the transverse-mass spectra.

Rachid Nouicer

SQM 2024

Collective effects are more pronounced in collisions characterized by large N_{part}

Rachid Nouicer

independent of centralities and collision

system size within uncertainties!

to be one of the signatures of QGP formation

• In small collision systems (p+AI, ³He+Au), the values of p/ π ratios in all centrality classes are similar to those measured in p+p collisions within uncertainties.

Rachid Nouicer

PH^{*}ENIX

p/π - Ratio in Large Collision Systems

Enhancement of baryon production in nucleus-nucleus collisions is considered to be one of the signatures of QGP formation

• In collision systems with large $\langle N_{part} \rangle$ values p/π ratios reach the values of ≈ 0.6 , which is ≈ 2 times larger than (p/ π) p+p.

Comparisons of identified charged-hadron R_{AB} values as a function of p_T in central and peripheral

Proton R_{AB} values in p+AI collisions at the intermediate p_T range (1.0 GeV/c < pT < 2.5 GeV/c) are equal to unity, while in d/³He+Au collisions proton R_{AB} is above unity → this difference btw p+AI and d/³He+Au might be caused by the size of the p+AI system being insufficient to observe an increase in proton production.

Rachid Nouicer

SQM 2024

PH*ENIX

Comparisons of identified charged-hadron R_{AB} values as a function of p_T in central and peripheral

PRC 109, 054910 (2024)

PH*ENIX

The R_{AB} values are found to be in agreement in collisions with different geometries, but with the same < N_{part} > values, indicating that identified charged-hadron production depends only on system size and not geometry.

Rachid Nouicer

ϕ -Meson Production in Small and Large Collision Systems

PH^{*}ENIX

In large systems (CuAu, Au+Au, and U+U):

φ-**meson production is** an excellent probe for studying QGP - sensitive to several aspects of the collision, including modifications of strangeness production in bulk matter.

- In small systems (p+Al, p+Au, d+Au, ³He+Au):
 φ-meson production is a good probe to study
 cold nuclear matter effects in order to disentangle hot
 nuclear (QGP related) and cold nuclear matter
 (modification of the production cross section in a
 nuclear target) effects exiting in A+B collisions.
- $\phi \rightarrow K^+ K^-$ with a branching ratio of 48.9 0.5 %

*p***-Meson** Invariant Transverse Momentum Spectra

Small systems

*p***-Meson** Nuclear Modification Factor in Small Systems

*d***-Meson** Invariant Transverse Momentum Spectra

Rachid Nouicer

SQM 2024

*p***-Meson** Nuclear Modification Factor in Large Systems

Large systems

Observations:

1) in central collisions: proton R_{AB} values are enhanced over all meson R_{AB} values. $m_{\phi} = 1019 \text{ MeV}/c^2$ is similar to $m_p = 938$ MeV/ c^2 , therefore the enhancement of proton R_{AB} values over ϕ -meson R_{AB} values suggests differences in baryon versus meson production instead of a simple mass dependence.

2) in peripheral collisions:

 R_{AB} (proton) and R_{AB} (ϕ -meson) are in good agreement within uncertainties.

ϕ -Meson: Comparison with the Symmetric Systems

 In order to better understand the features of φ-meson production, the integrated nuclear modification factors <R_{AB}> for φ-mesons as a function of <N_{part}> for different collision systems: Cu+Au, Cu+Cu, Au+Au, and U+U collisions.

Large systems

- The <*R_{AB}*> values for φ-mesons vs. <*N*part> obtained in the large collision systems are consistent within uncertainties
- The obtained (R_{AB}) results suggest the scaling of φ-meson production with the average nuclear overlap size, regardless of the collision geometry

Large Systems: Cu+Au, U+U, and Au+Au

The comparison of elliptic flow for ϕ -mesons in symmetric and asymmetric collision systems suggests that the v₂ values follow common empirical scaling with $\varepsilon N_{part}^{1/3}$

SQM 2024

Few bullets to remember from these measurements:

- \succ The freeze-out temperature (T₀) is approximately independent of centralities and collision system size
- In small systems (p+AI, ³He+Au): p/ π ratios in all centrality classes are similar to those measured in p+p
- In large systems (Cu+Au, U+U), p/π ratios reach \approx 2 times larger than (p/p) in p+p
- ϕ -meson meson production in p+Al collision system: R_{AB} of protons and all mesons are in agreement within uncertainties, which shows zero enhancement in proton to ϕ -meson production.

Auxiliaries Slides

K/ π Ratio in Small and Large Collision Systems **PH** $\stackrel{}{*}$ ENIX

PHENIX Collected and Enjoying Every Bit of RHIC Data

Analyzing and publishing all these very interesting scientific data takes time, manpower, and resources. PHENIX Collaboration is on the right path to achieve these goals, and seek for a new discovery (ies) about the properties of QCD Matter at RHIC.

 To maintain this momentum, Data and Analysis Preservation (DAP) is critical.

Run	Species	Total particle energy [GeV/nucleon]	total delivered Luminosity [mb ⁻¹]	Run	Species	Total particle energy [GeV/nucleon]	Total delivered luminosity [mb ⁻¹]
I (2000)	Au+Au Au+Au	56 130	< 0.001 20	IX (2009)	р+р +р	500 200	110x10 ⁻⁶ 114x10 ⁻⁶
				X (2010)	Au+Au	200	10.3x10 ⁻³
II (2001/2002)	Au+Au	200	25.8		Au+Au Au+Au	62.4 39	544 206
	Au+Au	19.6	0.4		Au+Au	7.7	4.23
	р+р	200	1.4x10 °		Au+Au	11.5	7.8
				XI (2011)	p+p	500	166x10 ⁻⁶
III (2003)	d+Au	200	73x10 ⁻⁶		Au+Au	19.6	33.2
	p+b	200	5.5210		Au+Au Au+Au	200	63.1
IV(2004)	Au+Au	200	3.53x10 ⁻³	XII (2012)	p+p	200	74x10 ⁻⁶
	Au+Au	62.4	67		p+p	510	283x10 ⁻⁶
	р+р	200	7.1X10 -	41		193 200	736 27×10 ⁻³
V (2005)	Cu+Cu	200	42.1x10 ⁻³		CutAu	200	21110
	Cu+Cu	62.4	1.5x10 ⁻³	XIII (2013)	p+p	510	1.04x10 ⁻⁹
	Cu+Cu	22.4	0.02x10 ⁻⁶			14.6	11.2
	p+p	200	29.5010 0.1×10 ⁻⁶			200	44.2 43 9x10 ⁻³
	p+b	410	0.1210	-	³ He+Au	200	134x10 ⁻³
VI (2006)	p+p	200	88.6x10 ⁻⁶				000 40 ⁻⁶
	р+р	62.4	1.05x10 °	XV (2015)	p+p p+Au	200 200 200	282x10 ⁻⁶ 1.27x10 ⁻⁶ 3.97x10 ⁻⁶
VII (2007)	Au+Au	200	7.25x10 ⁻³		ртлі	200	0.07 × 10
	Au+Au	9.2	Small	XVI (2016)	Au+Au d+Au	200 200	52.2x10 ⁻³ 46.1x10 ⁻³
VIII (2008)	d+Au	200	437x10 ⁻³		d+Au	62.4	44.0x10 ⁻³
. ,	p+p	200	38.4x10 ⁻⁶		d+Au	19.6	7.2x10 ⁻³
	Au+Au	9.6	Small		d+Au	39	19.5x10 ^{~~}