

Study of charm quark and QGP medium via Λ_c^+ and D⁰ production and collective flow at CMS

Soumik Chandra Purdue University, US On behalf of the CMS collaboration

Motivation

Study of charm quark

- □ Heavy quarks formed early in the collision
- $\hfill\square$ Evolution of collision system
- Probe energy loss mechanisms
- □ Hadronization process:
 - String fragmentation vs coalescence
 - $> \Lambda_c^+(udc)/D^0(c\overline{u})$ ratio essential for charm quark coalescence
 - ➤ May depend on system size (pp, pPb and PbPb collisions)
- \Box Anisotropic flow \rightarrow QGP interaction

Reconstruction

Reconstruction

Reconstruction

All possible combinations of three (two) charged tracks in an event are considered for pp and PbPb

Signal Extraction Λ_c^+ in pp

Signal Extraction Λ_c^+ in PbPb

128

(2024)

Signal Extraction Λ_c^+ in pPb

D⁰ anisotropy

Azimuthal anisotropy

Correlation between D⁰ and light particles
 Studying anisotropy:

 \succ Particle production in ϕ

$$\frac{dN}{d\phi} \propto \left(1 + \sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)]\right)$$

 $\phi \rightarrow$ azimuthal angle of D⁰ $\Psi_n \rightarrow$ symmetry plane (Event plane)

Properties:

- Diffusion
- Parton energy loss
- \succ Coulomb effect $\rightarrow \Delta v_2$

Signal Extraction D⁰ v_2

PLB 816 (2021) 136253

 $\square v_2 \text{ is extracted using the} \\ \text{scalar product method}$

□ Simultaneous fit of the πK invariant mass and v_2 , Δv_2

□ Linear function is assumed for background v₂

Results

Prompt $\Lambda_c^+ p_T$ spectra in pp

PYTHIA8+CR(mode2) is consistent with pp data.

> Final partons in the string fragmentation are color connected to minimize total string length

Prompt $\Lambda_c^+ p_T$ spectra in pp

FINAL RESUL

PYTHIA8+CR(mode2) is consistent with pp data.

- Final partons in the string fragmentation are color connected to minimize total string length
- GM-VFNS systematically below data for $p_T < 10 \text{ GeV/c}$
 - Fragmentation tuned from
 Belle/OPAL (e⁺e⁻ data)
 - Breakdown of the universality
 of charm quark fragmentation
 functions?

Prompt $\Lambda_c^+ p_T$ spectra in PbPb

FINAL RESUL

- □ Λ⁺_c p_T spectra measured for 4 centrality classes, and inclusive centrality (0-90%)
 □ For p_T > 10 GeV/c, the T_{AA} scaled yields of PbPb is systematically lower than that in pp collision.
 □ More suppression for central collisions
 - Energy loss of charm quark traversing the QGP medium

Prompt $\Lambda_c^+ R_{AA}$

- □ Larger suppression of Λ_c^+ production for central PbPb collisions
- □ R_{AA} decreases from low p_T up to ~14 GeV/c, then increases for higher p_T

Prompt $\Lambda_c^+ R_{AA}$

- □ Larger suppression of Λ_c^+ production for central PbPb collisions
- □ R_{AA} decreases from low p_T up to ~14 GeV/c, then increases for higher p_T
- Similar trend to other heavy flavor measurements.
 - $> D^0 R_{AA}$ minimum at $p_T \sim 9 \text{ GeV/c}$

Prompt Λ_c^+/D^0 in pp

pp 252 nb⁻¹ (5.02 TeV)

✤ PYTHIA8+CR2 predictions consistent with pp data for $p_T < 10$ GeV/c, systematically lower for p_T range 10-30 GeV/c.

Prompt Λ_c^+/D^0 in pp

pp 252 nb⁻¹ (5.02 TeV) CMS pp |v| < 1Data 1.2 CR2 prediction PLB821 (2021) 136622 $\begin{pmatrix} \Lambda_{c}^{+} + \Lambda_{c}^{-} \end{pmatrix} / \begin{pmatrix} D^{0} + \overline{D^{0}} \end{pmatrix}$ PLB795 (2019) 117 Global uncertainty: 6.6% JHEP 01 (2024) 128 0.2 0.0 5 10 15 20 25 30 p_{τ} (GeV/c)

- ♦ PYTHIA8+CR2 predictions consistent with pp data for $p_T < 10 \text{ GeV/c}$, systematically lower for p_T range 10-30 GeV/c.
- Catania model including both coalescence and fragmentation consistent with data for $p_T < 10$ GeV/c.

Prompt Λ_c^+/D^0 in pp

pp 252 nb⁻¹ (5.02 TeV)

- ✤ PYTHIA8+CR2 predictions consistent with pp data for $p_T < 10 \text{ GeV/c}$, systematically lower for p_T range 10-30 GeV/c.
- Catania model including both coalescence and fragmentation consistent with data for $p_T < 10$ GeV/c.
- TAMU model using statistical hadronization approach and including excited charmed baryon states beyond the PDG describes the data reasonably

Prompt Λ_c^+/D^0 in PbPb

FINAL RESUL

□ Λ⁺_c/D⁰ ratio for PbPb is consistent with pp data for p_T > 10 GeV/c.
 ➤ Coalescence process does not play a significant role for high p_T

Prompt Λ_c^+/D^0 in PbPb

FINAL RESUL

□ Λ⁺_c/D⁰ ratio for PbPb is consistent with pp data for p_T > 10 GeV/c.
 ➤ Coalescence process does not play a significant role for high p_T

- □ Model for PbPb collisions (0-20% centrality) consistent with data for p_T 10-12.5 GeV/c
 - Four-momentum conserving recombination mechanisms
 - Excited charm baryon states beyond PDG.
- □ Ratio consistent with e^+e^- for higher p_T region

Prompt Λ_c^+ & $D^0 p_T$ spectra in pPb

- *p_T* spectra measured in different multiplicity regions
 - Determined based on number of offline selected tracks
- Increased charm hadron production with higher multiplicity

CMS PAS HIN-21-016

Prompt Λ_c^+/D^0 ratio in pPb

- No significant multiplicity dependence
 - Differs from strange quark trend
- Coalescence process saturates early for charm quark with multiplicity

• Λ_c^+/D^0 ratio decreases with increasing p_T

Consistent with pp and PbPb results

Anisotropic D^0 flow in PbPb

The flow vector:

$$Q_{n,x} = \sum_{\substack{i=1\\M}}^{M} \cos(n\phi_i)$$
$$Q_{n,y} = \sum_{\substack{i=1\\i=1}}^{M} \sin(n\phi_i)$$

□ Flow coefficients

$$v_n\{SP\} \equiv \frac{\langle Q_n Q_{nA}^* \rangle}{\sqrt{\frac{\langle Q_{nA} Q_{nB}^* \rangle \langle Q_{nA} Q_{nC}^* \rangle}{\langle Q_{nB} Q_{nC}^* \rangle}}}$$

Elliptic flow, v_2

Triangular flow, v_3

Anisotropic D^0 flow in PbPb

- $\Box \text{ Strong } p_{\mathrm{T}} \text{ dependence of } v_2$ and v_3
- □ Significant nonzero v_3 up to $p_{\rm T} \sim 10 \text{ GeV/c}$
- Significant centrality dependence of v₂, while v₃ is largely independent of centrality

Anisotropic D^0 flow in PbPb

Comparison with models

□ No model explain the data over all centrality and p_T ranges.

Effect of Coulomb Field

Predictions for pions

Phys. Rev. C 98, 055201 (2018)

- Constraints on the electric conductivity of the quark-gluon plasma
- □ Difference in v_2 of D^0 and \overline{D}^0 mesons vs rapidity
- □ Rapidity averaged $\langle \Delta v_2 \rangle$ = 0.001 ± 0.001(stat) ± 0.003(syst)
- No evidence of strong Coulomb field observed in charm flow

Summary

- □ Λ_c^+ production significantly suppressed in PbPb → charm quark E-loss
- □ Λ_c^+ production in pp systematically higher than GM-VFNS calculation (tuned with e^+e^- data)
 - Breakdown of the universality of charm quark fragmentation functions?
- □ For $p_T > 10$ GeV/c, the Λ_c^+/D^0 ratios consistent in pp and PbPb, no significant coalescence contribution
 - $Λ_c^+/D^0$ ratios for pp and PbPb converge with e⁺e[−] for p_T > 10 GeV/c
- □ No significant multiplicity dependence in pPb
 - Differs with other quarks, saturation of coalescence?
- $\hfill\square$ Centrality and p_T dependence of anisotropic flow
 - > No sign of strong Coulomb field in PbPb

