ID de Contribution: 235

Type: Talk

Investigating Bottom Quark Energy Loss, Hadronization, and B Meson Nuclear Modification Factors in B^+ and B_s^0 Decays: Insights from CMS in pp, pPb, and PbPb Collisions

mardi 4 juin 2024 09:50 (20 minutes)

The exclusive decay channels $B_s^0 \rightarrow J/\psi \phi$ and $B^+ \rightarrow J/\psi K^+$ are investigated. The differential cross sections of B_s^0 and B^+ mesons as a function of their transverse momenta (p_T) in proton-proton collisions at 5.02 TeV are well-described by fixed-order plus next-to-leading logarithm calculations, using an integrated luminosity of 302.3 pb⁻¹. By utilizing previous lead-lead collision data at the same nucleon-nucleon (NN) center of mass energy, R_{AA} factors for the B mesons are determined. Additionally, the measurement of the B^+ meson production cross section is presented with respect to meson p_T inclusively and, for the first time, in different charged particle multiplicity ranges. This study is conducted in proton-lead collisions at NN center-of-mass energy of 8.16 TeV, utilizing data collected by the CMS detector in 2016 with an integrated luminosity of 175 nb⁻¹. The analysis focuses on the exclusive decay channel $B^+ \rightarrow J/\psi K^+$. Inclusive results demonstrate good agreement with fixed-order next-to-leading log calculations, and the ratio of nuclear modification factors is measured for different charged particle multiplicities. These studies provide a comprehensive understanding of B_s^0 and B^+ meson production, shedding light on their behavior in different collision environments and offering insights into the nuclear modification factors associated with these mesons.

Auteurs principaux: MEJIA GUISAO, Jhovanny Andres (CINVESTAV); MEJIA GUISAO, Jhovanny Andres (Cinvestav)

Orateurs: MEJIA GUISAO, Jhovanny Andres (CINVESTAV); MEJIA GUISAO, Jhovanny Andres (Cinvestav)

Classification de Session: Track2-HF&Q

Classification de thématique: Heavy-Flavours & Quarkonia