Measurement of the multiplicity dependence of charm hadron production in pPb collisions with CMS

Austin Baty for the CMS Collaboration

> June 4, 2024 **SQM 2024** Strasbourg, France

Suppression of quarkonia excited states

- Quarkonia suppressed in AA collisions
- Suppression of excited states also seen in small systems
- Co-moving particles break up excited

 - Suppression should scale with **comover density**

Studies of charmonia

- What about charmonia? weakly bound excited state Should be more sensitive to comover effects
- Initial studies performed in pAu, dAu, pPb vs N_{col} inconclusive

Recent measurements

- LHCb measurements rapidity dependence of excited state suppression?
- ALICE measurements study dependence on comover density directly
- Interpretation limited by large uncertainties in both cases
 - Comover effect expected only for prompt charmonia
 - Need prompt/non-prompt separation!

dence of excited state suppression? ence on comover density directly inties in both cases ompt charmonia

Detector and dataset

CMS DETECTOR

: 28.7 m

- 8.16 TeV pPb data
- 175 nb⁻¹
- Dimuon trigger
- Charged hadron multiplicity, N^{corr}_{trk} measured in $|\eta| < 2.4$ and $p_T > 0.4 \,\,{\rm GeV}$

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

Muon and dimuon acceptance

- Midrapidity muon acceptance limited by B field
- Analysis performed in 6 bins within dimuon acceptance
 - High-p_T (6.5-30 GeV) across all rapidity
 - Low-p_T (3-6.5 GeV) only in endcaps

Dimuons

Invariant mass peaks

Normalised $\sigma_{\psi(2S),n} / \sigma_{J/\psi,n} = \frac{\sigma_{\psi(2S),n} / \sigma_{J/\psi,n}}{\sum_{n} \sigma_{\psi(2S),n} / \sum_{n} \sigma_{J/\psi,n}}$

 Normalized ratio cancels acceptance, shadowing effects

Observable of interest

Te	$\langle \rangle$
	- /
I	'
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
· –	
	_
	_
	_
	_
	_
	_
	_
	_
	\neg
1	
	<u></u> ר

Far-backward results

Normalised $\sigma_{\psi(2S),n} / \sigma_{J/\psi,n} = \frac{\sigma_{\psi(2S),n} / \sigma_{J/\psi,n}}{\sum_{n} \sigma_{\psi(2S),n} / \sum_{n} \sigma_{J/\psi,n}}$

- Normalized ratio cancels acceptance, shadowing effects
- Clear slope vs. N_{trk}^{corr} for prompt data
- No slope for non-prompt data

Backward results

Normalised $\sigma_{\psi(2S),n} / \sigma_{J/\psi,n} = \frac{\sigma_{\psi(2S),n} / \sigma_{J/\psi,n}}{\sum_{n} \sigma_{\psi(2S),n} / \sum_{n} \sigma_{J/\psi,n}}$

- Normalized ratio cancels acceptance, shadowing effects
- Clear slope vs. N_{trk}^{corr} for prompt data
- No slope for non-prompt data

Midrapidity results

Normalised $\sigma_{\psi(2S),n} / \sigma_{J/\psi,n} = \frac{\sigma_{\psi(2S),n} / \sigma_{J/\psi,n}}{\sum_{n} \sigma_{\psi(2S),n} / \sum_{n} \sigma_{J/\psi,n}} \qquad 1.6$

- Normalized ratio cancels acceptance, shadowing effects
- Clear slope vs. N_{trk}^{corr} for prompt data
- No slope for non-prompt data

Te	V)
	-
	_
	-
	-
	_
	_
	-
	-
	_
	_
	_
	4
	, –
<u> </u>	
	3.5

Normalised $\sigma_{\psi(2S),n} / \sigma_{J/\psi,n} = \frac{\sigma_{\psi(2S),n} / \sigma_{J/\psi,n}}{\sum_{n} \sigma_{\psi(2S),n} / \sum_{n} \sigma_{J/\psi,n}} \qquad 1.6$

- Normalized ratio cancels acceptance, shadowing effects
- Clear slope vs. N_{trk}^{corr} for prompt data
- No slope for non-prompt data

Forward results

Te	V)
<u> </u>	
	· —
	_
	_
	_
	_
	_
	_
	_
	_
	\neg
	, –
	3.5
	_

Summary of high-pt results

- Slope of linear fits vs rapidity
 - Correlations between points in N_{trk}^{corr} accounted for
- No clear rapidity dependence
 - Average p_T is ~10 GeV
- All non-prompt measurements consistent with 0

Rapidity dependence of slope

Comparison to ALICE results

CMS prompt data vs. ALICE inclusive data*

• y_{cm} and p_T ranges slightly different but results are consistent

*JHEP 06 (2023) 147

Comparison to Theory

- Model includes comover interactions
- Reasonable agreement in p-going side
- Less suppression in Pb-going side compared to model

Low-pt results

- First observation of multiplicity-dependence of prompt $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in pPb
- Non-prompt ratio consistent with unity
- Hint of rapidity dependence at lower p_T
- Supports picture where suppression increases with comover density
 - Data constrain hadronization models of charm hadrons in small systems

Non-Prompt vs ALICE

ALICE data also compatible with non-prompt CMS results

Comparison to Theory - midrapidities

Theory predicts more suppression than data

Comparison to Theory - with low pT

Similar conclusions as with 6.5-30 GeV selection

Comparison to Theory - inclusive

Shape seems similar but scale of suppression is larger in model

- Clear suppression of prompt charmonia vs N_{trk} observed by LHCb in pp
 - Supported by co-mover model
- ALICE data also suggestive of co-mover suppression but less clear

13 TeV pp results

