

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-22 19:00:06.708096 GMT Run / Event / LS: 285726 / 434397940 / 219

Observation of double-J/ψ meson production in pPb collisions at 8.16 TeV <u>CMS-PAS-HIN-23-013</u>

ATTAS A CENSIS A CENSIS A CENSIS A CENSIS A CENSIS

S. Leontsinis University of Zurich on behalf of the CMS Collaboration

$^{\rm 2}$ Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV Introduction

nPS processes are important for fundamental studies

- probe of the partonic structure of the proton
- •input for the tuning of MC generators
- background of new physics signatures

•nPS sensitive to interplay between perturbative and non-perturbative QCD

- models can be tuned using data measurements
- •Rate of nPS processes increases with \sqrt{s}
 - parton densities increase
 - cross section of nPS

$$\frac{\sigma_{\rm nPS}}{\sigma_{\rm SPS}} \sim \left(\frac{\Lambda^2}{Q_h^2}\right)^{(n-1)}$$

- •in certain processes and/or regions of phase space, contributions from DPS are significant
- \bullet We have results from many experiments, using many final states and in different \sqrt{s}

Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV 3 DPS effective cross section

• DPS cross section can be expressed as:

 $\frac{\mathrm{d}\sigma_{\mathrm{DPS}}}{\mathrm{d}x_1\,\mathrm{d}x_2\,\mathrm{d}\bar{x}_1\,\mathrm{d}\bar{x}_2} = \frac{1}{C}\int_{x_1}^{1-x_2}\frac{\mathrm{d}x_1'}{x_1'}\int_{x_2}^{1-x_1'}\frac{\mathrm{d}x_2'}{x_2'}\int_{\bar{x}_1}^{1-\bar{x}_2}\frac{\mathrm{d}\bar{x}_1'}{\bar{x}_1'}\int_{\bar{x}_2}^{1-\bar{x}_1'}\frac{\mathrm{d}\bar{x}_2'}{\bar{x}_2'}$ $\times \sum {}^{R} \hat{\sigma}_{a_{1}b_{1}}^{(1)}(x_{1}'\bar{x}_{1}'s,\mu_{1}) {}^{R} \hat{\sigma}_{a_{2}b_{2}}^{(2)}(x_{2}'\bar{x}_{2}'s,\mu_{2})$ $a_1 a_2 b_1 b_2$ × $\int d^2 \boldsymbol{y}^R F_{a_1 a_2}(x'_1, x'_2, \boldsymbol{y}, \mu_1, \mu_2, \zeta)^R F_{b_1 b_2}(\bar{x}'_1, \bar{x}'_2, \boldsymbol{y}, \mu_1, \mu_2, \bar{\zeta})$

- •Assumption 1:
 - Generalized PDFs factorize into longitudinal & transverse components •
- introducing the transverse overlap function •Assumption 2:
 - The longitudinal double-PDF is the product of 2 single PDF
 - i.e. no parton correlations in colour, momentum, flavour, spin, ...
- • $\sigma_{\rm eff}$ = <Interparton transverse separation>².
 - •derivable from the geometric p-p overlap with naive expected size of $\sigma_{
 m eff}$ ≈ 30 mb
 - from di-quarkonia final states

•DPS is a proton-proton scattering process where two partons from each proton interact separately

 \bullet experimentally $\sigma_{
m eff}$ ~ 15 mb, derived from DPS of jets, photons, EWK bosons and $\sigma_{
m eff}$ ~ 5 mb, derived

u. Zurich

Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV 4 **DPS** effective cross section

Two contributions to DPS x-section in pA

(Glauber MC)

$$\sigma_{pA \to ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_{pN \to a}^{\text{SPS}} \sigma_{pN \to b}^{\text{SPS}}}{\sigma_{\text{eff}, pA}}$$

${\cal S}$ Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV Signal extraction

Fiducial requirement

For all muons

 $p_{\rm T} > 3.4 \,{\rm GeV} \qquad for \ 0 < |\eta| < 0.3$ $p_{\rm T} > 3.3 \,{\rm GeV} \qquad for \ 0.3 < |\eta| < 1.1$ $p_{\rm T} > 5.5-2.0 |\eta| \,{\rm GeV} \qquad for \ 1.1 < |\eta| < 2.1$ $p_{\rm T} > 1.3 \,{\rm GeV} \qquad for \ 2.1 < |\eta| < 2.4$

For the two J/ ψ mesons $p_{\rm T} > 6.5 \,\text{GeV}$ and |y| < 2.4

- Yield extraction
 - •2D unbinned extended ML fit
 - crystal ball function for signal
 - exponential for background
- •μμ+μμ channel

• $N_{J/\psi J/\psi}$ = 8.5 ± 3.4 and 4.9 σ significance

•µµ+ee channel

• $N_{J/\psi J/\psi}$ = 5.7 ± 4.0 and 2.3 σ significance

• Total significance of 5.3σ

$\overset{\bullet}{\sim} \qquad \text{Observation of double-J/} \psi \text{ meson production in pPb collisions at 8.16 TeV} \\ \text{Cross section measurement}$

•Measured fiducial cross section to be determined from single-J/ ψ MC-based efficiency in (p_T,y) plane

• $\sigma(\text{pPb} \to J/\psi J/\psi + X) = N_{\text{sig}}/(\epsilon \mathscr{L}_{\text{int}} \mathscr{B}_{J/\psi \to \mu\mu}^2)$

• considering only $J/\psi \rightarrow \mu\mu J/\psi \rightarrow \mu\mu$ mode

 $\bullet N_{\rm sig}/\varepsilon = \Sigma_i N_{\rm sig}^i/\varepsilon^i$

 $\bullet N_{\rm sig}^i$ is the per event signal weight

• $\epsilon^{i} = \epsilon^{i}_{\mu\mu,1} \epsilon^{i}_{\mu\mu,2}$ is the product of the two J/ ψ efficiencies

 $\bullet \epsilon = 62.1 \%$

Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV 7 Systematic uncertainties

Source of uncertainty	$\sigma(extsf{pPb}$ -	$ ightarrow$ J/ ψ J/ ψ -
J/ ψ meson signal shape	T/15	4.0%
Dimuon continuum background shape		2.5%
Luminosity		3.5%
Branching fraction		1.1%
Scale factors	VIV	1.3%
Total		6.1%
Pb		Pb

${\it 8}$ Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV SPS/DPS discrimination

• $\sigma(\text{pPb} \rightarrow J/\psi J/\psi + X) = 22.0 \pm 9.0 \text{ (stat)} \pm 1.5 \text{ (syst)}$ nb

- Cross section includes both SPS and DPS components
 - need to separate to measure DPS effective cross section

$$\sigma_{\rm eff,pA} = \frac{1}{2} \frac{(\sigma_{\rm SPS}^{\rm J/\psi})^2}{\sigma_{\rm DPS}^{\rm J/\psi J/\psi}}$$

- Most discriminating variables in DPS/SPS processes are $\Delta \phi$ and Δy
- •sPlot weights applied to data to acquire signal only $\Delta \phi$ and Δy distributions J/ψ_{2}
- •For the SPS/DPS separation we start from Δy
 - •SPS calculation shows steep $\Delta y(J/\psi_1, J/\psi_2)$ decrease
- •Safe to assume and fit the Δy >1.92 region, where SPS contamination is negligible $\frac{x}{2}$
 - •DPS template derived from event combinatorics
 - N_{DPS} = 2.1 ± 2.4 events
 - using this normalisation, the DPS template is compared with data
 - •N_{SPS} = 6.4 ± 4.2 events

Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV DPS effective cross section measurement pPb 174.6 nb⁻¹ (8.16 TeV) • $\sigma_{\text{SPS}}^{\text{pPb}\to J/\psi J/\psi + X} = 16.5 \pm 10.8 \text{ (stat)} \pm 0.1 \text{ (syst) nb}$ **CMS** Preliminary **CMS** Preliminary Events / 0.96 63 0 • $\sigma_{\text{DPS}}^{\text{pPb}\to J/\psi J/\psi + X} = 5.4 \pm 6.2 \,(\text{stat}) \pm 0.4 \,(\text{syst}) \,\text{nb}$ $\sigma_{\text{eff,pA}} = \left(\frac{1}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pPb} \to J/\psi + X} \sigma_{\text{SPS}}^{\text{pPb} \to J/\psi + X}}{\sigma_{\text{DPS}}^{\text{pPb} \to J/\psi J/\psi + X}}$ 10⁻¹ • $\sigma_{\rm eff,pA} = 0.53^{+\infty}_{-0.2} \,\mathrm{b}$ $\sigma_{\rm eff} = \frac{\sigma_{\rm eff,pA}}{A - \sigma_{\rm eff,pA} F_{\rm pA} / A}$ 10^{-2} 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 $\Delta y(J/\psi_1, J/\psi_2)$ **CMS** *Preliminary* Events / 0.96 •A = 208 for a Pb nucleus and $F_{\rm pA} = 29.5 \, {\rm mb}^{-1}$ is derived from the pPb thickness function with a Glauber MC model • $\sigma_{\rm eff} = 4.0^{+\infty}_{-1.5} \,\rm{mb}$

EPPS16 lead nPDF

 $\frac{\sigma_{\text{SPS}}^{\text{pPb}\to J/\psi+X}\mathcal{B}(J/\psi\to\mu^+\mu^-)}{\sigma_{\text{SPS}}^{\text{pPb}\to J/\psi J/\psi+X}\mathcal{B}^2(J/\psi\to\mu^+\mu^-)}$

Observation of double-J/ ψ meson production in pPb collisions at 8.16 TeV 10 Conclusion **CMS-PAS-HIN-23-013**

• First observation of the associated production of two J/ ψ mesons in pPb at $\sqrt{s_{NN}}$ = 8.16 TeV and measurement of the fiducial cross sections

- • $\sigma_{\text{SPS}}^{\text{pPb}\to J/\psi J/\psi + X} = 16.5 \pm 10.8 \text{ (stat)} \pm 0.1 \text{ (syst) nb}$
- • $\sigma_{\text{DPS}}^{\text{pPb}\to J/\psi J/\psi + X} = 5.4 \pm 6.2 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ nb}$
- extraction of σ_{eff} lower limit

• $\sigma_{\rm eff} > 1.0 \,{\rm mb}$ at 95% CL

• Future pPb data will provide more accurate $\sigma_{
m eff}$ extractions that can help clarify the observed span of $\sigma_{\rm eff}$ in pp collisions.

<u>CMS-PAS-HIN-23-013</u>

u. Zurich

Double J/ψ production diagrams

