Production of Y mesons in PbPb collisions with CMS

Prabhat R. Pujahari Indian Institute of Technology Madras (On behalf of the CMS Collaboration)

3 – 7 June 2024

Prabhat Pujahari

SQM 2024, Strasbourg

□ Motivation:

- Quarkonia as probes of QGP
- Quarkonia modification in heavy-ion collisions

CMS experiment:

- Muon performance across collision systems
- Quarkonia detection in CMS

Bottomonium states in PbPb collisions:

- R_{AA} vs. $< N_{part} > vs. p_T$
- Double ratio $\Upsilon(3S)/\Upsilon(2S)$ in PbPb and pp
- Binding energies
- Model comparisons

Summary

Probing QCD matter with Quarkonia

Ultimate goal: establishing a comprehensive picture of the in-medium microscopic interactions and formation of bound states of heavy quarks from QCD first principles

□ Production of heavy quarks from hard initial scatterings $(2m_Q \gg T_{medium} > \Lambda_{QCD})$ □ Formation time of $Q\bar{Q}$ bound states < emergence of a QGP phase (~0.5 fm/c) □ Debye screening in QGP leads to sequential melting as per the binding energy □ Correlated/uncorrelated recombination of $Q\bar{Q}$ pairs in QGP

Major advances in this area are achieved due to much larger cross-section (compared to lower energies), coupled with excellent capabilities of LHC detectors!

Υ(**I**S):

0.28fm

Υ(2S):

0.56fm

Υ(3S): 0.78fm

 $\ensuremath{\square}\xspace Quarkonia detected via dimuon decay channel: <math display="inline">Q \to \mu^+\,\mu^-$

□ Detecting muons: $\circ |\eta| < 2.4, p_T \gtrsim 1-4 \text{ GeV}$ $\circ \text{ Inner tracker}$ $\circ \text{ Muon chambers}$

Υ candidate in Pb-Pb collisions 5.02 TeV (Nov – Dec 2018)

• Measured from $P_T = 0 \text{ GeV}$

 \Box Large coverage for muons \Rightarrow wide coverage and better resolution for Quarkonia

Muon performance from pp to PbPb in CMS

Data driven measurement of muon reconstruction, identification and triggering eff

Muon identification: PbPb performance is very good, comparable to pp
Well described by MC simulations

3 – 7 June 2024

CMS

□ Mass scale and resolution stable among all systems

□No dependency on detector occupancy

 \Box Excellent mass resolution $\approx 1.4\% \rightarrow$ allowing clear separation of the excited states

$\Upsilon(3S)$ state in PbPb

arXiv:2303.17026

Accepted by PRL

First ever measurement of Υ(3S) in nucleus-nucleus collisions

MVA to improve signal/background ratio
Boosted decision trees
5.6σ signal for Y(3S)

Bottomonium suppression in PbPb

3 – 7 June 2024

$\Upsilon(2S)$ and $\Upsilon(3S)$ in PbPb

 $\Box \Upsilon$ states are suppressed in PbPb compared to pp collisions $\Box R_{PbPb}$ (1S) > R_{PbPb} (2S) > R_{PbPb} (3S) \bowtie excited states more suppressed

TAMU [PRC 96 (2017) 054901]

OQS + pNRQCD [PRD 108 (2023) 011502]

Model comparison (4)

Coupled Boltzmann [JHEP01(2021)046]

arXiv:2303.17026

Open quantum system framework, coupled transport equations and EPPS16 nPDF
Includes both correlated and uncorrelated recombination
Describe centrality dependence of 1S and 2S states, fails for 3S state

Model incorporates screening and gluon dissociation

SHMb [arXiv:2209.14562v1]

arXiv:2303.17026

Statistical hadronization of b-quarks in PbPb

 □ Effect of a partial thermalization of b-quarks:
→ SHMb incorporates an arbitrary suppression of beauty pairs at the phase boundary

□ A thermalization fraction of ~50% of b-quarks explains the bottomonium data at the LHC

Double ratio in CMS PbPb

$\frac{[\Upsilon(3S)/\Upsilon(2S)]_{PbPb}}{[\Upsilon(3S)/\Upsilon(2S)]_{pp}}$

 \rightarrow partial cancellation of systematic uncertainties

3 – 7 June 2024

 $\frac{[\Upsilon(3S)/\Upsilon(2S)]_{PbPb}}{[\Upsilon(3S)/\Upsilon(2S)]_{pp}}$

Models comparison

□ Models that include regeneration effect explains data well!

TAMU [PRC 96 (2017) 054901] \rightarrow the correlated recombination effect is expected to be quite significant to describe the data

Models that include dynamical recombination explains PbPb data well
OQS + pNRQCD [PRD108 (2023) 011502]

arXiv:2303.17026

 $\Box R_{PbPb}$ vs quarkonia binding energy

Incomplete contributions from feed-down decays yet to be measured!

