

Dependence of net-hyperon production at mid-rapidity on beam energy and its implication on baryon number carrier

Rongrong Ma (BNL), Chun Yuen Tsang (KSU, BNL) Under preparation with P. Tribedy, Z. Xu

What carries baryon number?

Baryon junction

Artru, X. NPB 85, 442–460 (1975) Rossi, G. C. & Veneziano. NPB 123, 507–545 (1977)

Baryon transport

- Valence quarks carry large momenta
 - · Contracted into thin "pancakes"
 - Less interaction time
 - · Hard to be stopped or transported

Junction carries small momentum

- Made of low-*x* gluons
- Easier to be transported

H1 and ZEUS, EPJC 75, 580 (2015)

Rongrong Ma, Chun Yuen Tsang, sQM 2024, Strasbourg

Baryon transport: rapidity slope

• Expect:
$$\frac{dN_B}{d\delta y} \propto e^{-\alpha_B \delta y}$$
, $\delta y = y_{beam} - y_{cm}$

	$lpha_B$
Data (net-proton)	0.61 ± 0.03
Baryon junction theory	0.42 – 1.0

Theory: D. Kharzeev, PLB 378, 238 (1996

Rongrong Ma, Chun Yuen Tsang, sQM 2024, Strasbourg

Baryon transport: centrality dependence

UrQMD Data ¥ Ō 0-5% 20-30% Ō 50-60% -UrQMD Au+Au |y| < 0.1 Au+Au 0.62 5-10% 30-40% 60-70% 10² $\sqrt{s_{NN}} = 7.7 - 200 \text{ GeV}$ 10-20% 40-50% 70-80% 0.60 Slope parameter ($lpha_B$) dN/dy_{p-p} 0.58 10¹ 0.56 0.54 10⁰ STAR Au+Au 0.52 $\sqrt{s_{NN}} = 7.7 - 200 \text{ GeV}$ 0.50 10 0.50% 10.80% 5.20% 20.20% 20.300 3 5 2 STAR, PRC 79, 034909 (2009) $\delta y = y_b - y$ STAR, PRC 96, 044904 (2017) Centrality

- Data: no centrality dependence
- UrQMD (valence quark): slope decreases from peripheral to central; more multiple scattering → more valence quark stopping

R.Ma Tue. 5:10pm

How about other types of baryons?

- Valence quarks: flavor preference
- Baryon junction: flavor blind

Net-hyperons: expectations

- Hyperons: baryons with at least one valence strange quark
 - $\Lambda^0(uds), \Xi^-(uss), \Omega^-(sss)$
 - (Anti-)hyperons have baryon number +1(-1)
 - Net-hyperon = hyperon antihyperon
- Baryon junction: flavor blind \rightarrow same transport behavior; same α_B for $\Lambda^0, \Xi^-, \Omega^-$
- Fit $\frac{dN_B}{d\delta y} \propto e^{-\alpha_B \delta y}$ for net- Λ^0 , net- Ξ^- , net- Ω^- to extract the slope parameters
 - Use published hyperon yields at mid-rapidity by STAR
 - $\delta y = y_{beam} y_{cm}$, $y_{cm} \sim 0$ while y_{beam} varies with beam energy

Net-hyperons: first glance

• Does not seem to follow the exponential function

STAR data: PRL 98, 062301 (2007); PRL 108, 072301 (2012); PRC 102(3), 034909 (2020)

Could it be due to the difficulty for producing strange quarks?

Strange quark production suppresion

- $K^{-}(s\overline{u})/\pi^{-}$: proxy for the rate of pairproduced s-quarks.
 - K^+ is not used due to associated production $(p + N \rightarrow \Lambda + K^+ + N)$
 - Assume that the QGP effects for strange mesons and baryons are the same
- Scale net-hyperon yields by $(K^-/\pi^-)^n$, where n is the number of valence strange quarks

STAR, PRC 96(4):044904, 2017

Scaled net-hyperon yields

Follow exponential function much better

Hyperon transport rapidity slope

- Consistent among different hyperons within uncertainties → support the flavor blind prediction
- Seems systematically higher than netproton. Maybe K^-/π^- is not the perfect proxy for s-quark production
- Also there seems a tendency to increase towards peripheral collisions?

Possible effect of Δ baryon decays

• $K^-/\pi^- vs. \delta y$ has different magnitude and shape in peripheral collision

 \rightarrow could be due to increased contribution of Δ baryon decays to pion yield

• We can use K^-/π^- from 0–10% for all centrality bins

Hyperon rapidity slope vs. centrality

 By using K⁻/π⁻ from 0–10% only, α_B for Λ⁰ and Ξ⁻are independent of centrality, as for the case of proton

How about non-STAR measurements?

Λ

Ξ

• Measurements in central Pb+Pb, Cu+Cu collisions follow those in Au+Au

PRC, 78, 034918 (2008); JPG, 32, 427–442 (2006); PLB, 728, 216–227 (2014); PRL, 111, 222301 (2013); PRC, 75, 064901 (2007); EPJC, 71, 1594 (2011); PRC, 66, 054902 (2002); PRC, 88, 044910 (2013); EPJC, 71, 1655 (2011)

Rongrong Ma, Chun Yuen Tsang, sQM 2024, Strasbourg

Comparison to PYTHIA

PYTHIA: no baryon junction in incoming protons

- Baryons produced mainly through "popcorn" mechanism
- CR Mode 2: allow dynamical formation of baryon junction prior to hadronization

Event generator	Tune	Process	Hadronic decay
Pythia 6.428	Default pysubs.msel = 1		ON
Pythia 6.428	Perugia0 (P0)	pysubs.msel = 1	ON
Pythia 6.428	Perugia2012 (P12)	pysubs.msel = 1	ON
Pythia 8.303	Default	SoftQCD:nonDiffractive = on	ON
Pythia 8.303	CR Mode 2	SoftQCD:nonDiffractive = on	ON

• Simulate p+p collisions at the same energies as Au+Au (7.7 – 200 GeV)

Fit PYTHIA distributions

- Exponential fit does not work as well as in data
- There are cases of negative net- Ξ^- and net- \varOmega^- yields, for which no fitting is performed

PYTHIA vs. data

Species	Data (0-60%)	Ver. 6.4	Ver. 6.4 (P0)	Ver. 6.4 (P12)	Ver. 8.3	Ver. 8.3 CR Mode 2
Λ	0.72 ± 0.07	2.58 ± 0.03	1.15 ± 0.01	0.81 ± 0.01	1.18 ± 0.01	0.88 ± 0.01
[1]	0.85 ± 0.13	N.A.	0.73 ± 0.05	0.52 ± 0.05	0.62 ± 0.08	0.55 ± 0.06
Ω	0.98 ± 0.32	N.A.	0.25 ± 0.10	0.04 ± 0.15	N.A.	N.A.
p	0.65 ± 0.07	0.74 ± 0.05	0.72 ± 0.02	0.35 ± 0.01	0.98 ± 0.02	0.69 ± 0.02

- Statistical errors only for PYTHIA predictions
- Overpredict slope for net- Λ , but underpredict for net- Ξ^- and net- Ω^-
- Stronger flavor dependence in PYTHIA than that in data
- CR Mode 2 improves agreement with data, but still not enough

Summary

- Recently, STAR collaboration presented multiple results that favor baryon junction over valence quarks as the baryon number carriers
- We test the baryon junction prediction of flavor blindness using hyperons
 - STAR Au+Au data from 7.7-200 GeV
 - Need to account for s-quark production suppression for net-hyperon yields
- Similar a_B values for different hyperons within uncertainties and independent of event centrality \rightarrow consistent with baryon junction picture
- No PYTHIA versions or tunes can describe slope parameters for all baryons
 - Including dynamical junction production helps, but not enough

Outlook

- STAR Beam Energy Scan Phase-II data can greatly improve precision of net-hyperon yield measurements, especially for Ω^-
- Measurements of hyperon yields in d+Au collisions at different energies can avoid the complication of QGP effects on strange hadrons
- Test the flavor blindness and associated forwad meson production at Electron-Ion Collider D. Frenklakh, et. al. PLB 853, 138680 (2024)

Backup slides

K^-/π^- ratio in PYTHIA

 Reject pions from eta, D mesons, Lambda, Xi, and Omega baryon decays

Y-Shaped baryon flux-tube in lattice QCD

F. Bissey, et al Phys. Rev. D 76, 114512 (2007)

 Some lattice calculations have suggested the formation of a Y-shaped color flux tube among the three quarks at long distances

T. T. Takahashi, *et al* Phys. Rev. Lett. **86**, 18 (2001) T. Takahashi, *et al*, Phys. Rev. D **65**, 114509 (2002)

Rongrong Ma, Chun Yuen Tsang, sQM 2024, Strasbourg

String junction model

- **3+1D hybrid model:** GLAUBER + MUSIC + URQMD
- String junction where the baryon charge of the string can fluctuate towards the center of the string with tuning parameter λ_B
 - $\lambda_B = 0.2$ closer to the dN/dy of net-protons at STAR

Net-baryon (B) vs. net-charge difference (ΔQ)

- Isobar: ${}^{96}_{44}Ru + {}^{96}_{44}Ru$ and ${}^{96}_{40}Zr + {}^{96}_{40}Zr$.
- $B = \left(N_p N_{\bar{p}}\right) + \left(N_n N_{\bar{n}}\right)$
- $\Delta Q = \left[\left(N_{\pi^+} + N_{K^+} + N_p \right) \left(N_{\pi^-} + N_{K^-} + N_{\bar{p}} \right) \right]_{\mathrm{Ru}} \left[\right]_{\mathrm{Zr}}$
- Valence quarks picture: $B/\Delta Q \approx A/\Delta Z$ at $|\mathbf{y}| < 0.5$
- Junction picture: $B/\Delta Q > A/\Delta Z$
 - Enhanced mid-rapidity emission.

