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Multi

plicity (data)

‘Thermal behavior’ in elementary relativistic
collisions and in light nuclel production
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How can loosely bound objects ‘survive’ the fireball heat bath ?

* A separation energy in hypertriton is 130 keV, i.e. a factor 1000
less than the chemical freeze-out temperature of the fireball

*Successful description of composite objects with a statistical

hadronization model implies no entropy production after chemical
freeze-out
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The proton In the basic parton model
(PYTHIA etc.)

Any parton model describes the
proton as a collection of point-like
quasi-free partons frozen in the infinite
momentum frame due to Lorentz
dilation.

Cross-sections are given by the
Incoherent sum of cross sections of
scattering off individual partons.
These models ignore quantum
mechanics

Sometimes ‘patched’ through DGLAP, cluster (HERWIG),
parton cascade (PCM) implementations, but e.g. DGLAP
has to be applied on the energy dependent gluon saturation
scale to take into account the high production of ‘clusters’
from soft processes in the initial state (see. T. Lappi,
arXiv:1104.3725)

Maybe our picture of independent parton-parton interactions
In proton-proton collisions is wrong 421



Quantum entanglement in transverse and
longitudinal direction

Transverse: Longitudinal:
DIS probes only part of the proton’s Particle production in QCD strings:
wave function (region a), but we sum

over all hadronic final states, which, in § &;/ _
QM, corresponds - —— — d
to the density matrix of a mixed state: //Q &

ﬁA = tI’Bﬁ """""""""" s | -mm o
with a non-zero entanglement B A B
entropy: Example: PYTHIA

B4 = —{p [ﬁA In ,5A] Different regions in a string are

entangled. Again A is described by a
mixed state reduced density matrix.

Could this lead to thermal-like behavior in
the final state particles ?
B Conclusion: Entanglement entropy is an

extensive quantity (depends on volume)
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‘Thermalization’ through quantum entanglement ?

Groundbeaking paper in condensed matter (experimental) (published in Science):

A.M. Kaufman et al., (Harvard), arXiv:1603.04409

Quantum thermalization through entanglement in isolated many-body system, but cold and
small (quantum quench in BE condensate of 8’Rb atoms), effective T = 5-10 J, study impact
on neighboring atoms

Even more relevant paper also in CM (experimental) (published in Nature Comm):
J. Kong et al., May 2020

/.\ Quantum technologies use entanglement to outperform classical technologies, and often
N employ strong cooling and isolation to protect entangled entities from decoherence by

random interactions. Here we show that the opposite strategy—promoting random inter-
actions—can help generate and preserve entanglement. We use optical quantum non-

demolition measurement to produce entanglement in a hot akali vapor, in a regime domi-

ARTICLE nated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing

'  — O inequalities to show that at least 1.52(4) x107 of the 532(12) x 10'3 participating atomns
Measurement-induced, SpatiaHy-eXtended enter into singlet-type entangled states, which persist for tens of spin-thermalization times
entanglement in a hOt, Strongly-interacting and span thousands of times the nearest-neighbor distance. The results show that high
atomic system termperatures and strong random interactions need not destroy many-body quantum

coherence, that collective measurement can produce very complex entangled states, and that

Jia Kong'?™, Ricardo Jiménez-Martinez2, Charikleia Troullinou?, Vito Giovanni Ludvero® 2
Géza Toth® 3456 & Morgan W. Mitchell27® the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for

sensing beyond the standard quantum limit.
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Entanglement in QCD evolution

Erwin Schrddinger, 1952

“...we never experiment with just one electron or atom
or (small) molecule. In thought experiments, we
sometimes assume that we do; this invariably entails
ridiculous consequences ... .”

S
Idea: initial state is entangled transversely (proton confinement) and longitudinally (string

formation). Can we measure remnants of coherence ? Are final state multiplicities due to initial
state entanglement (all the way to light nuclei) ?

Basis: in an entangled proton the number of possible states is given by the parton distribution
function which saturates at low x. The entanglement entropy can then be calculated through the
distribution functions. All partonic states have about equal probability, which means the
entanglement entropy is maximal and the proton is a maximally entangled state § — 111[336*(3;)]

If the second law of thermodynamics applies to entanglement entropy then the thermodynamic
entropy of the hadronic final state reflects the entanglement entropy of the initial state deduced
from the structure function (parton-hadron duality). |s the system not driven by thermalization but
by initial coherence, which looks thermal ? Sy . 4rons >~ Spge(x)

Measurements: particle multiplicities as a function of x, particle multiplicities at hadronization
trace back to initial parton entanglement (distribution of complex quark states based on string
fragmentation ?) 7191




Ditfferent Parton Distribution Functions

e Contributions from quarks might still be relevant at
low X

%2 ,[MSHT20LO|  a(M,)=0.130 X S[NNPDF21LQ  a(M,)=0.119

o B 5 Q1 =0.91 GeV? Legend » Q1 =0.91 GeV? - Legend
" [52] gluons 2 ghuons
o valence quarks 4 &b valence quarks

8/21



How to map parton entanglement to parton
nctions and experiment (rom 1904.11974)

distribution
Model Calcu

fL

d

tions

@First we obtain the number of gluons, N, by
integrating the gluon distribution xG(x) over a
given x range at a chosen scale Q°. We use the
leading order Parton Distribution Function (PDF)

set MSTW at the 90% C.L.

@ The Boltzmann entropy of the final-state
hadrons is shown as blue filled circles. It is
calculated from the multiplicity distribution, P(N),
in a rapidity range determined by the x range
used to derive Ny,0,- P(N) is taken from ep DIS
events created with the PYTHIA 6 or 8 event
generator

@ Since x and momentum transfer scale Q2 are
not directly available in pp collisions, an
alternative way of comparing the entropy at
similar x and scales are used.

In (1/x) ~ Yoroton = Yhadron

SEE

ep 27.5x460 GeV PYTHIA 6
IIIIIII| I IIIIIII| I I T TTTT1 1 LI IIIIIII| I IIIIIII| I IIIIIIII I 1
| Q*=2GeV?  Parton: L Q%=10GeV?
oln(N ) °
- gluon — 0 -
Hadron: o)
o Y PN)n[P(N) s
Q
0 O
| 0 0 _
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X X

In ep collisions: y,.,, is the proton beam rapidity

and Y .q4ron 1S the final-state hadron rapidity. For
example, events with 27.5 GeV electrons
scattering off 460 GeV protons with x between 3
x10° and 8 x10-° correspond to a rapidity range
of -3.5 <y <-2.5.
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This is slightly more complicated in pp

In pp collisions: two gluon distributions are involved, one
from each proton, while we calculate the entanglement
entropy from one distribution. Instead of altering the
definition of the entanglement entropy, one can modify the
P(N) distributions by extrapolating the P(N) distribution to
reflect a single proton similar to that in ep collisions, by
fitting a generalized Negative Binomial Distribution (NBD)
to the P(N) distributions. The final P(N) is then taken as the
same NBD function but with only half of the average
multiplicity. This approach relies on the assumption that
the final-state hadrons are produced coherently by the two
colliding protons instead by incoherent and independent
fragmentation.

9107 ALICE INEL [l In<0.5 . 2102 ALICE INEL' 8l I71<0.5 1
& L PP@is=09Tev 80 I7l<1 (10 3 & ob PP@is=276TeV [ yl<t (x10) ]
: B |71<1.5 (x107) 3 [ [1<1 5 (x107) 3

—-Single NBD

= —- Single NBED 3
— Double NBD

— Double NBD

10°° %
L o N
SICE T UAUCENEL  Mpios 4 SIFE AUCEINEL | @imkos | 3
G 1ok PP@is=7TeV [0 i<t (<107 3 & oL PP@15=8TeV BBl inl<1 (<10%)
3 [ Inl<1.5 (x10%) 3 # B9 [7]<1.5 (x10%)
—-SingleNBD 3 —-Single NBD =

— Double NBD =

— Double NBD -

Now that we understand how to

calculate the Initial state entropy we
would like to compare this to the
entropy of the final state hadrons.

We measure the hadron entropy using

Gibbs entropy formula and summing
over the probability distribution P(N).

S final X ZP(Np)In(P(Ny))

Procedure:
1.) measure multiplicity distributions
In a fixed rapidity range

2.) calculate x-value distribution

3.) calculate entropy distribution
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Comparison of data to non-linear QCD model (Kharzeev, Levin (2017)) using a BK
generating function of interacting color dipoles (parton cascade)
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Agreement between data and model indicates that the multiplicity distribution of the produced hadrons is very close
to the distribution in the number of partons that determines the entanglement entropy.

One can also calculate the upper bounds for these cumulants achieved at asymptotically high collision energy,
when the average multiplicity n becomes very large (solid line)
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SEE

NNPDF21_leading order with gluons only

- Entanglement Entropy vs. x (Ini<1)

* Final Entropy

I Initial Entropy NNPDF21_lo a(M ) =0.119
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-1 data)

The impact of quark contributions

< (% = 10 'i_r["-.

HSS: In(zE + xg]
— — NNPDF31 NNLO: In(xE + zg)
- — - — NNPDF31sx NNLO+NLL: In(zE + xg]

i 1~ N

Hentschinski & Kutak (2021):Disagreement at higher x could be due
to significant sea-quark contributions (shown here in comparison to
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NNPDF21_lo with gluons, sea quarks, valence quarks

s : - Entanglement Entropy vs. x (Ini<1)
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Ignorance’ scaling

A calculation by Duan, Akkaya, Kvoner, Skokov (arXiv:2001.01726)

based on the Page curve of limited acceptance (Mueller, Schaefer (arXiv: 2211.162695))

Sg is based on the set of observables (only sensitive to the diagonal matrix elements of the
density matrix). S, takes into account off-diagonal elements

S1(q)/Se(q)

1.4

1.3

1.2~

1.1~

0.9
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NNPDF21_lo with gluons, quarks and ‘ignorance scaling’
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The alternative (PYTHIA Monash Tune)
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SEE

The future
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Conclusions and outlook

Partons in proton collisions are entangled transversely and longitudinally during the expansion of
the QCD.

*Entanglement entropy is extensive (volume dependent), just like thermodynamic entropy.

*The reduced density matrix for a conformal field theory is locally thermal.

Entanglement generates ‘thermalization’

°|f the system looks ‘thermal’ due to entanglement, but actually never thermalizes through
interactions, then there is no decoherence effect and hadronic re-interaction effects are
negligible. The entanglement entropy translates one to one into the final hadronic entropy and
stays constant throughout the system evolution.

Particle production looks thermal, but is driven by parton-hadron duality, which also means that
composite hadronic objects might be formed from a single multi-quark QCD string.

*All light quark hadron yields are frozen in during the initial state at a common ‘temperature’.
Entanglement entropy is calculated over an extended volume at QCD crossover. Temperature
should then relate to Hagedorn temperature (e.g. Pajares et al., arXiv:1805.12444)

In pp: Hadron multiplicities as a f(x) in elementary collisions show already intriguing patterns that
point at entanglement. String fragmentation models mimic same effect through interactions (CR,
MPI). The ultimate test should be given at the Froissart bound (gluon saturation).

In AA: If there is no decoherence phase (global equilibration), then the ‘temperature’ from the
entangled phase will drive the multiplicity of all states from pion to light nuclei and even
hypernuclei and rare multi quark clusters. Measure identified particles as a function of n.
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