

Maria Lucia Sambataro

R_{AA} and v_n: relativistic transport approach for charm and bottom toward a more solid phenomenological determination of D_s

In collaboration with: V. Minissale, S. Plumari, G. Parisi, V. Greco

Dipartimento di Fisica e Astronomia 'E.Majorana'- Università degli Studi di Catania

INFN -Laboratori Nazionali del Sud (LNS)

Basic scales of charm and bottom quarks

2. A.Andronic EPJ C76 (2016), 3) R.Rapp, F.Prino J.Phys. G43 (2016)

CATANIA MODEL: QUASI-PARTICLE MODEL AND TRANSPORT THEORY

Quasi Particle Model (QPM) fitting IQCD

g(T) from a fit to ϵ from lQCD data \rightarrow good reproduction of P, $\epsilon\text{-}3P$

$$g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\lambda\left(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}}\right)\right]^{2}}$$

 λ =2.6 T_s =0.57 T_c

QPM Thermal Masses [GeV]

2

T/T_C [GeV]

Larger than pQCD especially as T \rightarrow T $_c$

S. Plumari et al, *Phys.Rev.D* 84 (2011) 094004 H. Berrehrah,, PHYSICAL REVIEW C **93**, 044914 (2016) 600

Relativistic Boltzmann equation at finite η/s

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p)=C[f_{q},f_{g}]$$

$$p^{\mu}\partial_{\mu}f_{g}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p)=C[f_{q},f_{g}]$$
Free-streaming
field interaction
$$\varepsilon - 3p \neq 0$$
Free-streaming
Collision term
gauged to some $\eta/s \neq 0$
For work of the second second

$$p^{\mu}\partial_{\mu}f_Q(x,p)=C[f_q,f_g,f_Q]$$

$$C[f_{q}, f_{g}, f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p_{1}}{2E_{1}'(2\pi)^{3}} \times [f_{Q}(p_{1}')f_{q,g}(p_{2}') - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |M_{(q,g) \rightarrow Q}(p_{1}p_{2} \rightarrow p_{1}'p_{2}')| \times (2\pi)^{4} \delta^{4}(p_{1}+p_{2}-p_{1}'-p_{2}')$$

Feynman diagrams at first order pQCD for HQs-bulk interaction:

Scattering matrices $M_{q,q}$ by QPM fit to IQCD thermodynamics

HADRONIZATION: hybrid Coalescence + fragmentation

For details: S. Plumari talk [04 June 09.10]

ALICE collaboration, *Phys.Lett.B* 813 (2021) 136054 M.L. Sambataro, et al., *Eur.Phys.J.C* 82 (2022)

[See S. Bass Overview on transport model (03 June 15.15)]

Extension to bottom dynamics: R_{AA}

Hadronization with coalescence + fragmentation model

 \succ Prediction for B meson R_{AA}

R_{AA} of electrons from semileptonic B meson decay

M.L. Sambataro et al., Phys.Lett.B 849 (2024) 138480

Extension to bottom dynamics: v_(n=2,3)

- Prediction for B meson
- electrons from semileptonic B meson decay within a coal + fragm model

No parameters changed with respect to charm dynamics

M.L. Sambataro et al., *Phys.Lett.B* 849 (2024) 138480

Data from ALICE, PRL 126, 162001 (2021)

Compared to charm quark

- Efficiency of conversion of ε_2 :
- ► 15% smaller for v_2 in most central collisions. ↓ 40% smaller for v_2 at 30–50% centrality.
- Efficiency of conversion of ε_3 :
- ► 30% smaller for v_3 at both 0-10% and 30-50% centralities.

From central to peripheral

- enhancement of v₂ (ϵ_2 (0-10%) \approx 0.13 and ϵ_2 (30-50%) \approx 0.42)
- similar v₃ ($\epsilon_3(0-10^{5}\%)^{-2}0.11$ and $\epsilon_3(30-50\%)^{-2}0.21$)

MOMENTUM DEPENDENT Quasi Particle Model: <u>QPM vs QPMp</u>

Going back to Quasi Particle Model (QPM)... Equation of State and Susceptibilities

Thermal masses of gluons and light quarks

N_f=2+1 Bulk: u,d,s

QPM Standard

no momentum dependence

 $g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\lambda\left(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}}\right)\right]^{2}} \qquad \lambda = 2.6 \\ T_{s} = 0.57 T_{c}$

S. Plumari et al, *Phys.Rev.D* 84 (2011) 094004 H. Berrehrah, PHYSICAL REVIEW C **93**, 044914 (2016)

QPM extension: QPMp(N_f=2+1+1)

QPM extension: $QPMp(N_f=2+1+1)$ and $m_c(T)$

we have also extended our quasi-particle model approach for Nf = 2+1 to Nf = 2 + 1 + 1 where the charm quark is included Temperature parametrization for charm mass:

Case 1: $m_c = 1.5 \ GeV$ **Case 2:** $m_c^2 = m_{c0}^2 + \frac{N_c^2 - 1}{8N_c} g^2 [T^2 + \frac{\mu_c^2}{\pi^2}]$ with $m_{c0} = 1.3 \ GeV$ **Case 3:** m_c fixed by charm fluctuation $\chi_2^c = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i^2}$

M.L. Sambataro et al. e-Print: 2404.17459

QPM understimates the IQCD data;

QPMp -> smaller 'thermal average mass' -> extra contribution in susceptibility

QPM extension: $QPMp(N_f=2+1+1)$ and $m_c(T)$

we have also extended our quasi-particle model approach for Nf = 2+1 to Nf = 2 + 1 + 1 where the charm quark is included Temperature parametrization for charm mass **Case 1:** $m_c = 1.5 \ GeV$. **Case 2:** $m_c^2 = m_{c0}^2 + \frac{N_c^2 - 1}{8N_c} g^2 [T^2 + \frac{\mu_c^2}{\pi^2}]$ with $m_{c0} = 1.3 \ GeV$. **Case 3:** m_c fixed by charm fluctuation $\chi_2^c = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i^2}$

M.L. Sambataro et al. e-Print: 2404.17459

QPMp – spatial diffusion coefficient D_s

QPMp – spatial diffusion coefficient D_s

QPMp – spatial diffusion coefficient D_s

Conclusions

- Extension to bottom quark dynamics in standard QPM: good description of R_{AA} and v_2 of electrons from semileptonic B meson decay and prediction for v_2 and v_3
- Charm mass [T] parametrization: charm susceptibility as function of T implies a decreasing $m_c(T)$ from 1.9 at T_c down to 1.5 at $2T_c$ getting closer to IQCD data for Ds.
- QPMp

Good reproduction of both EoS and susceptibilities -> decrease of D_s at small T. Bottom D_s very close to the new IQCD data for M-> ∞ .

- Spatial diffusion coefficient D_s(T) in the infinite mass limit -> satisfactory agreement with the IQCD calculations that include dynamical fermions, differently from previous IQCD data in quenched approximation.
 - Perspectives: Effect on observables for realistic simulations.

Thanks for the attention!

18

Back up slides

19

$QPMp - D_s and R_{AA}$

1+1D system $T = T_0 (t/t_0)^{-\frac{1}{3}}$

Initial momentum distribuction function \rightarrow FONLL for charm quark $R_{AA} = f_C(p, t_f) / f_C(p, t_0)$

QPM vs QPMp -> R_{AA} reduction especially for Case 3

Momentum dependent QPM approach

- Better description of recent IQCD data.
- Effects on the global χ^2 coming from the comparison to the experimental data of R_{AA} , v_n ?

QPM extended – QPMp + m_c (T)

we have also extended our quasi-particle model approach for Nf = 2+1 to Nf = 2 + 1 + 1 where the charm quark is included Temperature parametrization for charm mass Case 1: $m_c = 1.5 \ GeV$ Case 2: $m_c^2 = m_{c0}^2 + \frac{N_c^2 - 1}{8N_c} g^2 [T^2 + \frac{\mu_c^2}{\pi^2}]$ with $m_{c0} = 1.3 \ GeV$ Case 3: m_c fixed by charm fluctuation $\chi_2^c = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i^2}$

The following expression for the quark fluctuations:

$$c_2^q = \frac{\chi_2^q}{2} = \frac{1}{2} \frac{6}{\pi^2} \left(\frac{m_q}{T}\right)^2 \sum_{l=1}^{\infty} (-1)^{l+1} K_2(lm_q/T)$$

can be solved in terms of mq/T , with the χ values numerically obtained in IQCD. We then fit the resulting temperature dependence of charm mass

Extension to higher order anisotropic flows $v_n(p_T)$

In the more peripheral collision (30-50 % centrality class) \rightarrow larger v_2 and comparable $v_3 \rightarrow v_2$ mainly generated by the geometry of overlapping region in larger centrality collision $\sim v_3$ mainly driven by the fluctuation of the triangularity of overlap region at all centrality

Extension to higher order anisotropic flows $v_n(p_T)$

ESE technique and v_n correlations

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

M.L. Sambataro, et al., Eur. Phys. J.C 82

Extension to higher order anisotropic flows $v_n(p_T)$

ESE technique and v_n correlations

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

24

M.L. Sambataro, et al., Eur. Phys. J.C 82 (2022)

QPM extended – QPMp

Dyson-Schwinger studies in the vacuum \rightarrow following the model developed by PHSD group $M_{g}(T,\mu_{q},p) = \left(\frac{3}{2}\right) \left(\frac{g^{2}(T^{*}/T_{c}(\mu_{q}))}{6} \left[\left(N_{c} + \frac{1}{2}N_{f}\right)T^{2} + \frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right] \left[\frac{1}{1 + \Lambda_{g}(T_{c}(\mu_{q})/T^{*})p^{2}}\right]^{1/2} + m_{\chi_{g}}$ $M_{q,\bar{q}}(T,\mu_{q},p) = \left(\frac{N_{c}^{2} - 1}{8N_{c}}g^{2}(T^{*}/T_{c}(\mu_{q}))\left[T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right] \left[\frac{1}{1 + \Lambda_{q}(T_{c}(\mu_{q})/T^{*})p^{2}}\right]^{1/2} + m_{\chi_{q}}$ H. Berrehrah, W. et al., Phys. Rev.C 93, 044914 (2016). C. S. Fischer, J. Phys. G 32, R253 (2006). M.L. Sambataro et al. e-Print: 2404.17459 Momentum dependent factors

We correctly reproduce both **EoS** and **quark susceptibilities** which are understimated in the standard QPM approach.

Data taken from: S. Mohapatra Nucl. Phys. A 956 (2016) 59-66

QPM extended – **Preliminary** D_s and R_{AA}

coupling g(T)

Spatial diffusion coefficient $D_s \xrightarrow{\rightarrow}$ standard QPM standard QPM including charm extended QPM $T/T_c < 2 \xrightarrow{\rightarrow}$ strong non-perturbative behaviour near to T_c .

high T region \rightarrow the D_s reaches the pQCD limit quickly than the standard QPM.

D meson: Impact of large Λ_c production on R_{AA}

 $D_s(T)$ of charm quark that reproduces R_{AA} and v_2 gives good description of

- > Impact of Λ_c/D^0
- > Triangular flow $v_3(p_T)$.
- \succ q_2 selected anisotropic flow and spectra.

> With the same coalescence plus fragmentation model we describe the Λ_c/D^0

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

$(2\pi T)D_s$: Charm quark vs Bottom quark

From D_{c} we obtain (in the 1-2T_c range):

- $T_{th}(c) \sim 5 \text{ fm/c}$
- $T_{th}^{(i)}(b) \sim 11 \text{ fm/c}$ breaking w.r.t. the relation: $T_{th}(b) = (M_b/M_c)T_{th}(c) \sim 3.3 T_{th}(c) \sim 16.5 \text{ fm/c}$

- IQCD data are in $M_Q \rightarrow \infty$, so the D_s evaluated is mass independent + quenched medium
- QPM use finite mass and includes dynamical fermions

$$D_{s} = \frac{T}{M \gamma} = \frac{T}{M} \tau_{th}$$

From kinetic theory is expected that: $au_{th}(b) / \tau_{th}(c) \approx \gamma_c / \gamma_b \approx M_b / M_c$

In QPM approach $\rightarrow D_s(c)$ is 30-40% larger than $D_s(b)$ (no mass independence)

 $M{\rightarrow}$ ∞ limit is not reached for charm

M.L. Sambataro et al., e-Print: 2304.02953

$(2\pi T)D_s$ ratios: Charm quark vs Bottom quark

fictitious super-heavy quark staying in the $\rm M_Q \rightarrow \infty$ limit

> $D_s(M_{charm})/D_s(M)$ as a function of M/M_{charm} at T_c :

Saturation scale of Ds for $M_Q \sim 8 M_{charm} \gtrsim 10 \text{ GeV}$ Ds $(M_{charm})/Ds(M \rightarrow \infty) = 1.9$ for QPM. Ds $(M_{charm})/Ds(M \rightarrow \infty) \simeq 1.4$ for pQCD.

- Ratios at fixed mass as a function of T:
 - **b/M^{*}: about 25% in all T range**
 - c/b: about 50% at $\rm T_{c}\,$ and not smaller than 30%
 - c/M*: factor 1.5-2

M.L. Sambataro et al., e-Print: 2304.02953

$(2\pi T)D_s$: Charm quark vs Bottom quark

- From D_v we obtain (in the 1-2T_v range):
- $T_{th}(c) \sim 5 \text{ fm/c}$
- $T_{th}^{(i)}(b) \sim 11 \text{ fm/c}$ breaking w.r.t. the relation: $T_{th}(b) = (M_b/M_c)T_{th}(c) \sim 3.3 T_{th}(c) \sim 16.5 \text{ fm/c}$

IQCD data are in M_Q→∞ so D_s is mass independent

$$D_s = \frac{T}{M \gamma} = \frac{T}{M} \tau_{th}$$

• QPM use finite mass and includes dynamical fermions

From kinetic theory is expected that: $au_{th}(b) / \tau_{th}(c) \approx \gamma_c / \gamma_b \approx M_b / M_c$

D_s(T) from QPM in the infinite mass limit is the more pertinent to compare to IQCD simulations evaluated taking into account dynamical fermions

M.L. Sambataro et al., e-Print: 2304.02953

Ds mass dependence: QPM vs QPMp

Numerical solution of Boltzmann Equation

Use Test-Particle Method to sample the phase space distribution function

 $f(\vec{x}, \vec{p}, t) = \omega \sum_{i=1}^{N_{test}} \delta^{(3)}(\vec{x} - \vec{r}_i(t)) \delta^{(3)}(\vec{p} - \vec{p}_i(t))$

 \mathbf{F}_{i} solution of Boltzmann eq. $\rightarrow\,$ Test particles solve classical Hamilton eq. of motion

$$\begin{cases} \vec{p}_i(t + \Delta t) = \vec{p}_i(t - \Delta t) + 2\Delta t \cdot \left(\frac{\partial \vec{p}_i}{\partial t}\right)_{coll} \\ \vec{r}_i(t + \Delta t) = \vec{r}_i(t - \Delta t) - 2\Delta t \cdot \left[\frac{\vec{p}_i(t)}{E_i(t)}\right] \end{cases}$$

Collision Integral mapped through a Stochastic Al

$$P_{22} = \frac{\Delta N_{coll}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{rel} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$$

 $\Delta t \square 0$ and $\Delta^3 x \square 0$: exact solution

Final phase-space of HQ + bulk parton scattering sampled according to $|M_{QCD}|^2 \square$ code test through simulations in a "box"

[Scardina, Colonna, Plumari, and Greco PLB v.724, 296 (2013)] [Xu and Greiner PRC v. 71, (2005)]

Hybrid Hadronization Model for HQs

COALESCENCE: Formula developed for the light sector [Greco, Ko, Levai PRL 90 (2003)]

FRAGMENTATION: HQs that do not undergo to Coalescence

$$\frac{dN_H}{d^2 \boldsymbol{P}_T} = \sum_f \int dz \frac{dN_f}{d^2 p_T} \frac{D_{f \to H}(z)}{z^2}$$

We use Peterson parametrization: $D_H(z) \propto \left[z \left(1 - \frac{1}{z} - \frac{\epsilon_c}{1-z} \right)^2 \right]^{-1}$ Peterson et al. PRD 27 (1983) 105

Parameter ε_{1} tuned to reproduce *D* and *B* meson spectra in pp collisions.

Plumari, Minissale, Das, Coci, Greco, EPJ C 78 (2018) no.4

Relativistic Boltzmann equation at finite η/s

Bulk evolution

$$C[f_{q}, f_{g}, f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p_{1}'}{2E_{1}'(2\pi)^{3}} \times [f_{Q}(p_{1}')f_{q,g}(p_{2}') - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |M_{(q,g) \rightarrow Q}(p_{1}p_{2} \rightarrow p_{1}'p_{2}')| \times (2\pi)^{4} \delta^{4}(p_{1} + p_{2} - p_{1}' - p_{2}')$$

35

Scattering matrices $M_{q,q}$ by QPM fit to IQCD thermodynamics

Spatial diffusion coefficient of charm quark

<u>Reviews</u>:

- F. Prino and R. Rapp, JPG(2019)
- X. Dong and V. Greco, Prog.Part.Nucl.Phys. (2019)
- Jiaxing Zhao et al., arXiv:2005.08277

Not a model fit to IQCD data, but D_s estimate that comes from results of R_{AA} (p_T) and v_2 (p_T)

We have a probe with $\tau_{therm}\approx\tau_{QGP}$

$$\tau_{th} = \frac{M}{2\pi T^2} (2\pi T D_s) \cong 1.8 \frac{2\pi T D_s}{(T/T_c)^2} \text{ fm/c}$$

FUTURE:

- -Access low p and precision data (detector
- upgrade)
- -Better insight into hadronization
- -New observables
- -Bottom Main focus of this talk