

Multiplicity dependence of hyperon and hypertriton production in Zr+Zr and Ru+Ru collisions at $\sqrt{s_{NN}}$ = 200 GeV

Dongsheng Li (for the STAR collaboration) University of Science and Technology of China

Strasbourg, June 5th, 2024

A. Feliciello, T. Nagae Prog.Part.Nucl.Phys. 57, 564-653 (2006) T. R. Saito et.al., Nature Reviews Physics 3, 803–813 (2021)

Left: Jerzy Pniewski Right: Marian Danysz

• Hypernuclei production mechanism at mid-rapidity of HIC is important

- The nucleosynthesis of the little bang
- Thermal production v.s. nucleon coalescence

Thermal model

- Hadrons and (hyper-)nuclei are treated equally
- Yields are predicted with thermal equilibrium assumptions

Coalescence model

- (Hyper-)nuclei formation after kinetic freeze-out
- Nucleon coalescence
 - Wigner function
 - The emission source size and the nuclear radius affect the yields

• Hypertriton $\binom{3}{\Lambda}$ H) is special

- Small binding energy and large nuclear radius
- Interesting to study its production in systems with different sizes

• Multiplicity dependence of $^{3}_{\Lambda}$ H yield ratios

- Powerful test on the models
- Only two measurements available
- Can we expect a more differential study with higher precison?

The ALICE collaboration, PRL 128, 252003 (2022)

• Multiplicity dependence of $^{3}_{\Lambda}$ H yield ratios

- Powerful test on the models
- Only two measurements available
- Can we expect a more differential study with higher precison?

• STAR recorded a large sample of isobar collisions (Zr+Zr & Ru+Ru) at $\sqrt{s_{NN}}$ = 200 GeV in 2018

The ALICE collaboration, PRL 128, 252003 (2022)

- Need hyperon yields as reference to ${}^{3}_{\Lambda}$ H production
- Anything else to learn from a hyperon measurement?
- Strange hadron yield scaling with system size at LHC energy
 - Common multiplicity dependence of hyperon-to-pion ratios in different collision systems
 - Strangeness enhancement in high multiplicity p+p collisions

• How about testing this scaling property at RHIC energy?

• Isobar collision is a good choice

STAR detector

• Time Projection Chamber (TPC)

Large acceptance, good performance within |y| < 0.8 for hypernuclei reconstruction

Signal reconstruction

- Signal is extracted via an invariant-mass analysis
- KFParticle^[*] + Machine Learning method (XGBDT as core) for ${}^{3}_{\Lambda}$ H reconstruction
- The mixed event method can reproduce the combinatorial backgrounds well

V0 particle	Decay channel	Method
$\Lambda(\overline{\Lambda})$	$\Lambda \rightarrow p + \pi^- (and c.c.)$	KFParticle
$\Xi^{-}(\bar{\Xi}^{+})$	$\Xi^- \rightarrow \pi^- + \Lambda \ (and \ c.c.)$	KFParticle
$^{3}_{\Lambda}\text{H}(\frac{3}{\Lambda}\overline{\text{H}})$	$^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + ^{3}\text{He} (and c.c.)$	KFParticle XGBDT

[*] X.-Y. Ju et.al., NST 34, 158, 2023

05/06/2024

A and $\overline{\Lambda}$ production in isobar collisions

- Measurement within 4 different centralities
- Extrapolation down to $p_T = 0$ GeV/c with Blast Wave function
- Feed-down correction $(\Xi \rightarrow \pi + \Lambda)$ on Λ candidates with MC simulation

Ξ^- and $\overline{\Xi}^+$ production in isobar collisions

- Measurement within 4 different centralities
- Extrapolation down to $p_T = 0$ GeV/c with Blast Wave function

- Measurement within 4 different centralities
- Extrapolation down to $p_T = 0$ GeV/c with Blast Wave function

- Hyperon-to-pion ratios follow the same trend as a function of $dN_{ch}/d\eta$ for different collision systems
- Similar Hyperon production mechanism for systems with same multiplicity despite differences in collision energy or system

STAR: PRL 98, 062301 (2007) PRC 75, 064901 (2007) PRC 79, 034909 (2009)

ALICE: PLB 728, 216–227 (2014) PLB 728, 25–38 (2014) PLB 758, 389–401 (2016) Nature Phys 13, 535–539 (2017)

$^{3}_{\Lambda}$ H production dependence on system size: $^{3}_{\Lambda}$ H/ Λ and S $_{3}$

STAR

$^{3}_{\Lambda}$ H production dependence on system size: $^{3}_{\Lambda}$ H/ Λ and S $_{3}$

STAR

STAR

$^{3}_{\Lambda}$ H production dependence on system size: $^{3}_{\Lambda}$ H/ Λ and S $_{3}$

$^{3}_{\Lambda}$ H production dependence on system size: $^{3}_{\Lambda}$ H/ Λ and S $_{3}$

STAR

$^{3}_{\Lambda}$ H production dependence on system size: $^{3}_{\Lambda}$ H/ 3 He

Thermal-Fist:

STAR

V. Vovchenko, H. Stoecker Comput. Phys. Commun. 244, 295-310 (2019) MUSIC + UrQMD + Coalescence: K.-J. Sun et.al. arXiv:2404.02701

Summary

- Hyperon (Λ, Ξ^-) and Hypertriton ($_{\Lambda}^{3}H + \frac{3}{\Lambda}\overline{H}$) yield measurement in Zr+Zr & Ru+Ru collisions @ $\sqrt{s_{NN}}$ = 200 GeV at STAR
- p_T spectra are shown for each particle species

• Hyperon-to-pion ratios shown as a function of multiplicity

- Consistent trend for collision systems from RHIC to LHC energy
- Similar hyperon production mechanisms at same multiplicity for different collision systems

• ${}^{3}_{\Lambda}H/{}^{3}He$, ${}^{3}_{\Lambda}H/\Lambda$ and S_{3} are shown as a function of multiplicity, while ${}^{3}_{\Lambda}H/{}^{3}He$ is shown also as a function of p_{T}

- No significant p_T and multiplicity dependence on ${}^3_{\Lambda}H/{}^3He$ within current precision
- No significant multiplicity dependence on S_3 within current precision
- More efforts are needed to explain the deviations between the isobar data and the model calculations

Outlook

Many new data are coming out

• Hyperon production in small collision systems @ $\sqrt{s_{NN}}$ = 200 GeV

- O+O collision
- High multiplicity p+p collision

• Hypernuclei production in Au+Au collision @ $\sqrt{s_{NN}}$ = 200 GeV (2023-2025)

- Would allow a more precise measurement on multiplicity dependence
 - Better statistics for $^{3}_{\Lambda}H$
 - Even possible for A = 4 hypernuclei study

Backup

- In each centrality, to execute a Thermal-Fist fit with CE, we need to set the number of conserved charges within the correlation volume V_c (take $V_c = dV/dy$ as an example)
- Net-baryon B from the interpolation of the baryon stopping measurement
- Net-electric charge Q from Q/B = 0.45 (for Ru or Zr, Z/A \sim 0.45)
- Net-strangeness S = 0

Thermal model with different settings for Isobar

- The Thermal-Fist results are obtained by fitting the hadron yields (π^- , K^- , p, Λ , Ξ^- and their anti-particles)
- The thermal prediction on ${}^{3}_{\Lambda}H/\Lambda$ is very sensitive to the configurations
- While S_3 and $^{3}_{\Lambda}H/^{3}He$ only show weak dependence on the configuration details
- By setting T as a free parameter, we find it will slightly vary with centrality
- So we draw error bands by fixing T to the central value and values of 1- σ difference

Centrality	T (MeV) with CE fit
0-10%	157±3
10-20%	159±3
20-40%	161±3
40-80%	165±4

Thermal model with different settings for Isobar

STAR preliminary

Zr+Zr & Ru+Ru @ √s_{NN} = 200 GeV

Thermal-F	ist (Zr+Zr & Ru+Ru 200 GeV)
	CE, T = 155 MeV, V = dV/dy
	CE, T = 155 MeV, V [×] ₂ = 3 dV/dy
	CE, T = 150 MeV, V = dV/dy
	CE, T = 160 MeV, $V_{c}^{c} = dV/dy$
	CE, T free, $V_{z} = dV/dy$
	CE, T free, $V_{c}^{c} = 3 dV/dy$
	GCE, T free ^c
	GCE, T = 150 MeV
	GCE. T = 155 MeV
<u> </u>	GCE, T = 160 MeV

- The Thermal-Fist results are obtained by fitting the hadron yields (π^- , K^- , p, Λ , Ξ^- and their anti-particles)
- The thermal prediction on $^3_\Lambda H/\Lambda$ is very sensitive to the configurations
- While S_3 and ${}^3_{\Lambda}H/{}^3He$ only show weak dependence on the configuration details
- By setting T as a free parameter, we find it will slightly vary with centrality
- So we draw error bands by fixing T to the central value and values of $1-\sigma$ difference

Centrality	T (MeV) with CE fit
0-10%	157±3
10-20%	159±3
20-40%	161±3
40-80%	165±4

Thermal model predictions

- Using the hipe4ml Package
 - <u>https://github.com/hipe4ml/hipe4ml</u>
 - XGBDT + optuna

C Test package passing license GPL-3.0 python 3.8 | 3.9 | 3.10 | 3.11 pypi v0.0.15 DOI 10.5281/zenodo.5070131

Minimal heavy ion physics environment for Machine Learning

XGBDT training with hipe4ml package

BDT output distributions on the training and testing sample of signal and background

Hyperon yields zoom-in

