

First $D^0 + \overline{D}^0$ measurement in heavy-ion collisions at SPS energies with NA61/SHINE

Anastasia Merzlaya (UiO) (for the NA61/SHINE Collaboration)

SQM24 04.06.2023

Motivation of open charm measurements

- Heavy quarks are produced in the hard scattering processes that occur in the early stage of the collision between partons of the incoming nuclei;
- By studying charm hadrons one can get insight into properties of the medium created in the collision;
- Such measurements can be in a big interest at the SPS energies, close to the threshold of QGP creation.
- There are no measurements of open charm in A+A collisions at SPS.

Models of charm production

Predictions of charm yield differ by up to two orders of magnitude for central heavy-ion collisions at the top SPS energy (beam momentum 150A GeV/c, $\sqrt{s_{NN}}$ = 16.8 GeV);

- Obtaining precise data on $D^0 + \overline{D}{}^0$ is expected to narrow the spectrum of viable theoretical models and thus learn about the charm quark and hadron production mechanisms.
 - HSD: Hadron-String Dynamics
 O. Linnyk et al. Int. J. Mod. Phys. E 17 (2008), 1367-1439
 - pQCD: the scaled PYTHIA calculations
 P. Braun-Munzinger et al. Phys. Lett. B 490 (2000), 196-202
 - HRG: Hadron Resonance Gas Model
 M. I. Gorenstein et al. J.Phys.G 27 (2001) L47-L52
 - Statistical Quark Coalescence:
 M. I. Gorenstein et al. Phys.Lett.B 509 (2001) 277-282
 - **Dynamical Quark Coalescence**: ALCOR and MICOR models extended to charm formation.
 - P. Levai et al. J.Phys.G 27 (2001) 703-706
 - SMES: A statistical model of the early stage
 M. Gazdzicki et al., Acta Phys. Polon. B 30 (1999), 2705

p+A measurements of charm at low $\sqrt{s_{NN}}$

- Open charm measurements in π+A and p+A data from SPS and Fermilab experiments show:
 - PYTHIA reasonably describes energy dependence;
 - □ PYTHIA underestimates the $D^0 + \overline{D}{}^0$ production crosssection by the factor 3-3.5.

NA38/NA50 & NA60

- Indirect estimation of open charm yield using dimuons from semi-leptonic charm quark pair decays by NA50 and NA60;
- Open charm contribution was separated via the fit procedure from an inclusive dimuon distribution, which also contains charmonium and Drell-Yan components;
- Centrality-dependent scaling factor for open charm production in PYTHIA is needed to reproduce the di-muon background in the intermediate mass range.

Anomalous J/ψ suppression

- For central heavy-ion collisions $(N_{part} \sim 200)$ anomalous J/ψ suppression is observed in In+In and Pb+Pb collisions by NA60;
- It was initially attributed to onset of QGP formation in nuclear collisions, however CNM explanations have been proposed:
 - Shadowing;
 - Nuclear absorption.
- Open charm measurements would provide another view to the anomalous J/ψ suppression observed by NA60.

The NA61/SHINE experiment at CERN SPS

 $\sqrt{s_{NN}} = 5.1-17.3 (27.4) \text{ GeV}$

Small Acceptance Vertex Detector

- Four stations at z = 5, 10, 15 and 20 cm;
- 16 MIMOSA sensors with pixel size 18.4×18.4 µm²;
- Primary vertex resolution $\sigma_{x,y} \approx 1 \, \mu \text{m}$, $\sigma_z = 15 \, \mu \text{m}$;
- Secondary vertex resolution $\sigma_{x,y} \approx 10 \ \mu \text{m}, \ \sigma_z = 170 \ \mu \text{m} \ \text{for } D^0 \ \text{and } \overline{D}^0.$

The SAVD acceptance for $D^0 + \overline{D}^0$ is

$$-0.5 < y < 1.0$$

 $0.2 < p_T < 2.0 \text{ GeV/}c$

(analysis is performed in this single bin)

Event and track selection

- Event selection:
 - □ Data taking of Xe+La 150A GeV/c in 2017;
 - 1.93M **0-20%** central events;
- Track selection:
 - □ 3 or 4 SAVD hits (→ spatial resolution)
 - □ ≥10 TPC hits (→ momentum resolution)
 - No PID was applied.

$D^0 + \overline{D}^0$ reconstruction

$$D^0 \rightarrow K^- + \pi^+$$
 $\overline{D}^0 \rightarrow K^+ + \pi^-$
(BR=3.93%)

cut	value
(a) Impact parameter of daughter d	>36 µm
(b) Distance between primary and secondary vertices V_z/γ	>0.15 mm
(c) Impact parameter of parent D	<20 µm
Distance of closest approach DCA	<42 μm
Parent momentum	13 <p<38 c<="" gev="" td=""></p<38>

$D^0 + \overline{D}{}^0$ signal in 0-20% Xe+La at 150A GeV/c

- $K\pi$ -invariant mass distribution for 0-20% Xe+La at 150A GeV/c;
- This is the first direct observation of $D^0 + \overline{D}{}^0$ signal at the SPS energies with significance better than 5;

Simulations in GEANT4

- For obtaining the corrections the simulation in GEANT4 was performed:
 - The background was described using the EPOS model;
 - The signal phase space was parametrized using 3 models;
 - □ The yield of $D^0 + \overline{D}^0$ from the models not used;
 - Parametrized signal is used to enrich background event.

Visible yield of $D^0 + \overline{D}{}^0$ in 0-20% Xe+La at 150A GeV/c

correction with:	$N_{visible}(D^0 + \overline{D}^0)$
AMPT	0.184±0.032 (stat)
PHSD	0.204±0.036 (stat)
PYTHIA/Angantyr	0.201±0.035 (stat)

-0.5 < y < 1.0

 $N_{visible}(D^0 + \overline{D}^0)$ **0.196 ± 0.035** (stat) **± 0.051** (syst)

Systematic uncertainties include:

- Model-dependent phase space;
- Track quality cut selection;
- Spatial cuts selection;
- •Signal extraction procedure;
- Background fitting procedure.

$\langle D^0 + \overline{D}{}^0 \rangle$ and dN/dy in 0-20% Xe+La at 150A GeV/c

correction with:	$\frac{dN (D^0 + \overline{D}^0)}{dy}$ for -0.5 < y < 1.0	Yield in 4π $\langle D^0 + \overline{D}{}^0 \rangle$
AMPT	0.129 ±0.023(stat) ± 0.035(syst)	0.218 ±0.039(stat) ± 0.060(syst)
PHSD	0.148 ±0.026(stat) ± 0.036(syst)	$0.303 \pm 0.054 (stat) \pm 0.074 (syst)$
PYTHIA/Angantyr	0.147 ±0.026(stat) ± 0.037(syst)	0.300 ±0.052(stat) ± 0.075(syst)

Extrapolation factors for AMPT significantly differ from PHSD and PYTHIA/Angantyr due to different phase space distribution of $D^0 + \overline{D}^0$:

AMPT: 84.1% of all $D^0 + \overline{D}{}^0$ are in the selected $y - p_T$ bin

PHSD: 67.4%

PYTHIA/Angantyr: 66.9%

Estimation of $\langle D^0 + \overline{D}^0 \rangle$ for Xe+La from p+A data

• One can estimate $D^0 + \overline{D}{}^0$ yield for Xe+La at $\sqrt{s_{NN}}$ = 16.8 GeV from the extrapolation of π +A and p+A data:

$$\langle D^0 + \overline{D}{}^0 \rangle = 2 \times \frac{\sigma_{D^0 + \overline{D}{}^0}}{\sigma_{inelastic\;for\;p+p} = 31 \text{mb}} \times N_{coll} = 0.46$$

(the value was cross-checked with recent PYTHIA calculations, which shows similar result)

Comparison of $\langle D^0 + \overline{D}^0 \rangle$ with models

- Red band indicates theoretical uncertainty of the obtained result.
- Precision of the data is sufficient to discriminate between extreme model predictions;
- The dynamical microscopic models (AMPT, Pythia, PHSD) significantly underestimate $\langle D^0 + \overline{D}{}^0 \rangle$ while ALCOR and SMES overestimate it.
- The obtained results are above p+A extrapolation at the level of ~2-3σ:
 - Imprecision of the extrapolated p+A cross-section;
 - Fragmentation in A+A vs p+A?
 - N_{coll} vs N_{par} scaling?

Summary & Outlook

- The first direct open charm observation in heavy-ion collisions at the SPS energies was done
 for Xe+La 0-20% central collisions at 150A GeV/c.
- Precision of the obtained result is sufficient to disentangle between theoretical models.
- After LS2, an upgraded version of Vertex Detector based on ALPIDE sensors designed for ALICE ITS was installed;
- Together with the upgrade of the TPC readout electronics and DAQ it allows data taking with 1 kHz rate.
- In 2022-2023 NA61/SHINE collected ~180M Pb+Pb events at 150A GeV/c.
 The data should allow:
 - the p_T and y differential measurements of D^0 and \overline{D}^0 ;
 - measurements of other charm hadrons;
 - → Better insight into charm production mechanisms at energies close to production threshold.

Thank you for your attention!

The NA61/SHINE experiment

- Beam detectors
 - Position
 - Charge
 - Time
- of beam particles

The NA61/SHINE experiment

The NA61/SHINE experiment

Vertex Detector

- Main purpose of the Vertex Detector is the improvement of track resolution near the interaction point to allow reconstruction of secondary vertices;
- SAVD is positioned between the target and the VTPC-1;
- Four planes of coordinatesensitive detectors are located at 5, 10, 15 and 20 cm distance from the target.

ladders with sensors

target .

Main Vertex Detector components

MIMOSA-26AHR

- 1152x576 pixels of 18.4x18.4µm2
- □ 3.5 µm resolution, 0.05% X0
- Readout time: 115.2 μs, 50μm thin
 PICSEL Group, IPHC Strasbourg

ALICE ITS ladder

- Ultra light carbon fibre
- < 0.3% X0 including water cooling</p>
- St. Petersburg, CERN

CBM Micro Vertex Detector Prototype

- Sensor integration
- Flex print cables, Front-end boards
- Read-out based on TRB3 FPGA Board
 Goethe Universitet Frankfurt am Main

dE/dx

Daughters of $D^0 + \overline{D^0}$ are in the range of 5-30 GeV/c, where π and K dE/dx curves overlap. So, no dE/dx used

Comparison $N_{4\pi}(c\bar{c})$ with models

- Values for the models are scaled from Pb+Pb 0-20%;
- Values for data scaled from $\langle D^0 + \overline{D}{}^0 \rangle$ using ratio provided by event generators:

	Ratio of $c\bar{c}$ decaying into $(D^0 + \overline{D^0})$
PHSD	62%
PYTHIA/Angantyr	35%

- Comparison of the data and models show significant discrepancy between them:
 while some models (SMES) is overestimating the charm yield, other (HSD) underestimating it.
- The closest model predictions to obtained result are HRG and Quark Coalescence.

Results and discussion

Scaling with $N_{coll} = 331.1/598.8$ Scaling with $N_{part} = 173.7/272.5$

|---| Stat uncertainty

[---] Syst uncertainty