

Measurement of charged and neutral kaons in Ar+Sc collisions at NA61/SHINE experiment

Tanja Šuša (for the NA61/SHINE Collaboration)

Institute Ruđer Bošković, Zagreb, Croatia

SQM 2024, June 5th 2024

NA61/SHINE - UNIQUE MULTIPURPOSE EXPERIMENT AT SPS: Hadron production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies

SUISSE

ERANCE

CMS

 \mathbf{Ch}

LHC 27 km

ATLA

ALICE

NA61/SHINE Spectrometer

- Large acceptance hadron spectrometer
 - Coverage of the full forward hemisphere down to $p_T = 0$
- Tracking by Time Projection Chambers (VTPC-1 and VTPC-2 inside magnets)
- PID by dE/dx, ToF measurement, decay topology, invariant mass
- Centrality selection by forward energy measured by PSD

Beams:

Ions (Be, Ar, Xe, Pb)
 ▶ p_{beam} = 13A - 150A GeV/c
 √s_{NN} = 5.1 - 16.8 GeV

- Hadrons (π, K, p)
 - ▶ p_{beam} = 13 400 GeV/c

NA61/SHINE Physics Program

Strong interaction physics:

- Study of the properties of the onsets of deconfinement and fireball
- Search for the critical point of strongly interacting matter
- Direct measurement of open charm

Neutrino and cosmic-ray physics:

- Measurements for neutrino programs at J-PARC and Fermilab
- Measurements of nuclear fragmentation cross section for cosmic-ray physics

Kaon Production in 0 - 10% Central Ar+Sc Collisions

Charged Kaon Identification

- dE/dx identification based on the measurement of energy loss of charged particles along the particle trajectory in Time Projection Chambers
 - Performed in the relativistic rise region

Charged Kaon Identification

tof - dE/dx identification

NA61/SHINE, EPJC 84 (2024) 4, 416

Charged

Juction

Example of transverse momentum spectra - ArSc at 75A GeV/c

- ▶ Charged kaon production was measured at 13A, 19A, 30A, 40A, 75A, and 150A GeV/c
- Transverse momentum spectra are measured in a large rapidity range
- The systematic uncertainties are shown by the red shaded boxes
- d²n/dp_Tdy spectra were fitted with the exponential functions

NA61/SHINE, EPJC 84 (2024) 4, 416

Charged Kaon Production

Transverse momentum spectra at mid-rapidity

The dn/dy yields of charged kaons at mid-rapidity were obtained from the measured d²n/dp_Tdy spectra and extrapolations using fitted functions

p _{beam} (GeV/c)	(dn/dy) _{y≈0} (K+)	(dn/dy) _{y≈0} (K-)
75A	$3.732 \pm 0.016 \pm 0.148$	$2.029 \pm 0.012 \pm 0.069$

Charged Kaon Production

Rapidity spectra

- dn/dy points were obtained by integration of the d²n/dp_Tdy spectra and extrapolation using fitted exponential functions
- Obtained rapidity spectra were fitted with double-Gaussians
- Mean multiplicities were determined from dn/dy spectra supplemented with the extrapolated yields using fitted double-Gaussian functions

p _{beam} (GeV/c)	$\langle K^+ \rangle$	$\langle K_{-} \rangle$
75A	$11.84 \pm 0.08 \pm 0.39$	$5.33 \pm 0.01 \pm 0.14$

- Reconstruction based on decay topology and invariant mass spectra
- ▶ Branching ratio BR \approx 69.2% for K⁰_s decays into charged pions
- Breit-Wigner function is used to describe the signal, a third order Chebychev polynomial to describe the background

K⁰_s Production in Ar+Sc at 75A GeV/c

- ▶ p_T distributions of the K⁰_s mesons are measured in seven rapidity bins in the rapidity range [-1.5, 2]
- The systematic uncertainties are shown by the blue shaded boxes
- ▶ d²n/dp_Tdy spectra were fitted with the exponential functions

NA61/SHINE, arXiv:2312.06572

K⁰_s Production in Ar+Sc at 75A GeV/C SINE

- dn/dy points of the K⁰s mesons were obtained as the integrals of the curves fitted to the corresponding transverse momentum spectra
- The systematic uncertainties are shown by the blue shaded boxes
- The rapidity spectrum was fitted with a double-Gaussian
- Mean multiplicity was determined as the integral of the fitted double-Gaussian function

$$\langle K_{0s}^{0} \rangle = 6.49 \pm 0.10 \pm 0.74$$

K⁰_s Production in Ar+Sc at 75A GeV/c

The reliability of the K⁰_s extraction is checked by studying the K⁰_s lifetime

Good agreement with the PDG value

Comparison of Charged and Neutral Kaons

Comparison of Charged and Neutral Kaons

Ar+Sc at 75A GeV/c

• Total uncertainties shown: $\sqrt{stat^2 + sys^2}$

- Approximately equal abundance of charged and neutral kaons expected, as Ar and Sc nuclei are nearly isospin symmetric (valence u = d within 6%)
- Excess of charged to neutral kaons observed in the whole rapidity range

Charged to Neutral Kaon Ratio - World Data

- ▶ R_K measured by NA61/SHINE is significantly higher than 1: $R_K = 1.184 \pm 0.061$ (tot.)
- Similar effect visible in the results from other experiments

Charged to Neutral Kaon Ratio - Models

- ▶ Predictions from UrQMD and HRG models presented by F. Giacosa (Tuesday, 8:50 AM)
- Black and grey lines show the HRG and UrQMD predictions for electric to baryon charge Q/B = 0.4
- Black dots represent the HRG baseline for Q/B values specified according to the given types of colliding nuclei
- HRG and UrQMD models do not reproduce the experimental result on charged to neutral kaon ratio

Charged to Neutral Kaon Ratio in Asymmetric System

 π^- +C at 158 and 350 GeV/c:

- ► Experimental R_K > 1
- Models fail to describe charged to neutral kaon ratio even for small asymmetric system

Summary

- NA61/SHINE has measured charged kaon production in 0 10% central Ar+Sc collisions at 13A, 19A, 30A, 40A, 75A, and 150 AGeV
- ▶ K⁰s production has been measured in 0 10% central Ar+Sc collisions at 75A GeV/c
- ▶ Ratio $R_{K} = (K^{+} + K^{-})/(2K^{0}s)$ for Ar+Sc at 75A GeV/c is on the level of 1.2
- $R_K > 1$ has been measured also in π -+C collisions at 150 and 350 GeV/c
- HRG and UrQMD models do not reproduce the experimental result on charged to neutral kaon ratio in A+A collisions
- Models fail to describe charged to neutral kaon ratio also for small asymmetric π -+C system
- Analysis of the production of K⁰s mesons in central Ar+Sc collisions at 40A and 150A GeV/c is ongoing → stay tuned

Thanks for you attention!