Hypernuclei and Ξ^- at HADES

Recent results from measurements of Hypernuclei and Ξ^- Hyperons in the high μ_B / high net-baryon density region of the QCD phase diagram

Simon Spies for the HADES Collaboration

The HADES Experiment (Heavy-Ion Setup)

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- Time of flight walls RPC and TOF
- RICH and ECAL for e⁺/e⁻ and photon identification
- Forward hodoscope (FW) for spectator detection

• Almost full azimuthal angle and polar angles between 18° and 85° covered

The HADES Experiment (Heavy-Ion Setup)

- Setup optimized for low material budget around target region to reduce γ conversion probability
 - Advantageous for Hypernuclei measurements as they have large in-medium absorption cross-sections (Phys. Rev. Lett. 131 (2023) 102302)
- Produced particles leave beampipe and enter RICH radiator gas after ≈ 2.5cm
 - Due to minimum decay length criterion all analyzed Hypernuclei decay within the RICH radiator gas

The HADES Experiment

- PID primarily via. momentum and velocity
 - Separation of multiple charged particles via. specific energy loss
- Heavy-ion beamtimes:
 - > 2012: 7 billion Au+Au evts. 1.23A GeV: $\sqrt{s_{NN}}$ = 2.42 GeV
 - > 2019: 14 billion Ag+Ag evts. 1.58A GeV: $\sqrt{s_{NN}}$ = 2.55 GeV
 - > 2024: 1.8 billion Au+Au evts. 0.8A GeV: $\sqrt{s_{NN}}$ = 2.24 GeV

The HADES Experiment

- PID primarily via. momentum and velocity
 - Separation of multiple charged particles via. specific energy loss
- Heavy-ion beamtimes:
 - > 2012: 7 billion Au+Au evts. 1.23A GeV: $\sqrt{s_{NN}}$ = 2.42 GeV
 - > 2019: 14 billion Ag+Ag evts. 1.58A GeV: $\sqrt{s_{NN}}$ = 2.55 GeV
 - > 2024: 1.8 billion Au+Au evts. 0.8A GeV: $\sqrt{s_{NN}}$ = 2.24 GeV

Nuclear Collisions at SIS18/HADES Energies

- Nucleons essentially stopped in collision zone
 - > Baryon dominated fireball N(B) \approx 10 N(π)
- About 50% of protons clustered in light nuclei

• A Hyperon production close to free NN threshold energy, Ξ Hyperons far below free NN threshold: N + N \rightarrow Y + K + N: $\sqrt{s} = 2.55$ GeV N + N $\rightarrow \Xi$ + K + K + N: $\sqrt{s} = 3.25$ GeV

05.06.2023

Hypernuclei at SIS18/HADES Energies

- Production of Hypernuclei favored by baryon dominance of the fireball
- Production of Hypernuclei limited by the amount of produced Λ Hyperons
- "Sweet Spot" for the 10⁻⁶ production of Hypernuclei expected in the energy regime of the upcoming CBM experiment (Lect.Notes Phys. 814 (2011) pp.1-980)

Hypernuclei might allow deductions on their underlying
 Y-N interactions relevant for the nuclear EOS at high densities

Weak Decays

Reconstruction and Analysis of weakly decaying Hadrons

05.06.2023

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- Long lifetimes → Off-vertex-topology
- Evaluated by an artificial neural network TMVA: arXiv:physics/0703039v5 [physics.data-an]

Toolkit for MultiVariate Data Analysis with ROOT

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- Long lifetimes → Off-vertex-topology
- Evaluated by an artificial neural network TMVA: arXiv:physics/0703039v5 [physics.data-an]

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- Long lifetimes \rightarrow Off-vertex-topology
- Evaluated by an artificial neural network TMVA: arXiv:physics/0703039v5 [physics.data-an]

Weak Decay Reconstruction Performance

- Large phase space coverage with low statistical errors
- Data points well described by Boltzmann functions
 - \succ Extrapolation to 4π

Hypernuclei

Reconstruction and analysis of Hypernuclei

05.06.2023

Hypernuclei from Au+Au $\sqrt{s_{NN}}$ = 2.42 GeV

- Prior only estimation of upper production rate limit possible
- Same method as for Λ and K⁰_S applied
- Significant signals in the two-body-decay channels
- Lowest energy at which Hypernuclei were ever reconstructed in Heavyion collisions

• In case of the $^{4}_{\Lambda}$ H sufficient statistics to analyze the production differentially

Hypernuclei from Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV

- Significant signals in the two-body-decay channels
- Three-body-decay channels more challenging due to increased combinatoric background
- Multi-differential analysis of Hypernuclei production possible

• More significant signals \rightarrow Focus on this dataset to reduce uncertainties

Hypernuclei from Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV

- Hints for signals in the three-body-decay channels for ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He
- Strong combinatoric background suppression using strong selection on aNN response
- Contamination by $\Lambda \rightarrow p + \pi^-$ decays removed by $m_{p+\pi^-} < 1110 \text{ MeV/c}^2$
- Further attempts to improve the signals ongoing

• For the moment not sufficient statistics to analyze the signals differentially

Hypernuclei from Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV

- Hints for signals in the three-body-decay channels for ⁴_ΛH and ⁴_ΛHe
- Strong combinatoric background suppression using strong selection on aNN response
- Contamination by $\Lambda \rightarrow p + \pi^-$ decays removed by $m_{p+\pi^-} < 1110 \text{ MeV/c}^2$
- Further attempts to improve the signals ongoing

• For the moment not sufficient statistics to analyze the signals differentially

$^3_{\Lambda}$ H Two-Body Decay: $^3_{\Lambda}$ H \rightarrow 3 He + π^-

$^3_{\Lambda}$ H Two-Body Decay: $^3_{\Lambda}$ H \rightarrow 3 He + π^-

- $> {}^{3}_{\Lambda}H$ Lifetime measurement to contribute to resolving the ${}^{3}_{\Lambda}H$ lifetime puzzle
- Lifetime of (249 ± 21 ± 30) ps compatible with free Λ lifetime measured
- Extensive uncertainty evaluation performed

$^{4}_{\Lambda}$ H Two-Body Decay: $^{4}_{\Lambda}$ H \rightarrow 4 He + π^{-}

$^{4}_{\Lambda}$ H Two-Body Decay: $^{4}_{\Lambda}$ H \rightarrow 4 He + π^{-}

- ⁴_AH Lifetime measurement to contribute to world data on Hypernuclei lifetimes
- Lifetime of (216 ± 7 ± 10) ps compatible with earlier measurements measured
- Extensive uncertainty evaluation performed

Ξ⁻ Hyperons

Reconstruction and analysis of Ξ^- Hyperons

05.06.2023

Reconstruction of double-strange Ξ[−] Hyperons

- Ξ⁻ Hyperons measured via their double-weak decay chain:
 - $\Xi^- \rightarrow \Lambda + \pi^- \rightarrow p + \pi^- + \pi^-$

Counts

- Excellent combinatorial background suppression enabled by two aNN
- Significance slightly below 5σ yet clear signal above combinatorial background observable

- First measurement of double-strange Ξ^- Hyperons in few GeV Ag+Ag collisions
- Outlook: Improved reconstruction efficiencies using KFParticle package

Analysis of double-strange Ξ[−] Hyperons

- Statistics not sufficient for multi-differential analysis of production and extrapolation to 4π
 - 4π yield determined by an educated guess of the Ξ⁻ emission pattern based on multidifferential analysis of Λ hyperons
 - Large systematic uncertainties!
- Canonically extended SHM model predicts strong dependence of canonical radius R_c and ϕ/Ξ^- ratio
 - Measurement is of high importance for the SHM fit despite its large uncertainties

Poster by Marvin Kohls "Systematics of Hidden and Open Strangeness Production in Few GeV HICs"

Summary

F		ID
_	> Ph	ase 0

- First multi-differential analysis of Hypernuclei around mid-rapidity at SIS18 energies
- Bell-shaped rapidity distributions
- Lifetime measurements compatible with recent measurements by STAR and ALICE
- Extensive uncertainty evaluation performed
- Paper on Hypernuclei in preparation
- First measurement of double-strange
 Ξ⁻ Hyperons in few GeV Ag+Ag collisions
- Ξ^- may help to constrain canonical SHM fit

The HADES Collaboration

05.06.2023

Nuclear Collisions at SIS18/HADES Energies

- Nucleons essentially stopped in collision zone
 - Detected particles predominantly rescattered nucleons
- Slow spectators $\beta_{CM} \approx 2/3c$
 - Secondary interactions in spectator regions (pole caps)
- Centrality estimation more challenging than at high collision energies

Λ dN/dy Spectrum

- Longitudinal anisotropy of particle emission due to only partial stopping of nucleons in the collision zone
- Longitudinal and transverse kinetic spectra cannot be described by statistical model with single effective temperature
- Effective Temperature of 105 MeV describes transverse spectra but results in too narrow longitudinal spectrum (Orange Function)
- An extended model with additional parameter η describing the longitudinal anisotropy allows precise description with T_{Eff} = 117 MeV and η = 0.21 (Blue Function)

Λ Lifetime t vs. Decay Length VDX

05.06.2023

Λ Lifetime t vs. Decay Length VDX

Test case: A Lifetime

- Using the Extended Model with
 T_{Eff} = 117 MeV and η = 0.21 for acceptance and efficiency correction
- Exponential decay curve measured for A hyperons yields (262 ± 2) ps – In perfect agreement with PDG lifetime of ≈ 263 ps!
- > Needs to be taken into account for the lifetime measurements of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H!

Outlook: HADES and CBM @ SIS100

Outlook: HADES and CBM @ SIS100

- Investigation of the QCD phase-diagram in the 2.7-4.9 GeV energy regime
- Interaction rates of up to 10 MHz with CBM using free streaming data collection
 - Rare probes can be studied in detail
- Di-electron and di-muon setup available
- Micro-Vertex-Detector / Tracker
 - Reconstruction of further particles possible
 e.g. Σ[±], D[±], etc.
- CBM physics program: Lect.Notes Phys. **814** (2011) pp.1-980

