

Investigating the system size dependence of hypernuclei production with A < 5 using the ALICE detector

Yuanzhe Wang¹ for the ALICE Collaboration ¹Fudan University

Hypernuclei

- Hypernuclei: bound states of nucleons and hyperons
- Unique nuclear system can be used as probes to study hyperon-nucleon (Y-N) interaction (⇒hyperons in Neutron Star)
- The simplest case: hypertriton $(^3_\Lambda H)$, consisting of a proton, a neutron, and a Λ hyperon

• But also a special case: small Λ binding energy ${}^{3}_{\Lambda}$ H: $B_{\Lambda} \sim 100$ keV, ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He: $B_{\Lambda} \sim MeV$

Hypernuclei

- Hypernuclei: bound states of nucleons and hyperons
- Unique nuclear system can be used as probes to study hyperon-nucleon (Y-N) interaction (⇒hyperons in Neutron Star)
- The simplest case: hypertriton $\binom{3}{\Lambda}H$, consisting of a proton, a neutron, and a Λ hyperon

• But also a special case: small Λ binding energy ${}^{3}_{\Lambda}$ H: $B_{\Lambda} \sim 100$ keV, ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He: $B_{\Lambda} \sim MeV$

- The first hypernuclei were discovered in 1950s in cosmic ray experiments
- Need to be reconstructed by its decay products

Bonetti et al., Il Nuovo Cimento 11.2, (1954)

Production mechanism of nuclei

- SHM (statistical hadronization model):
 - Ideal hadron resonance gas in thermal equilibrium at the chemical freeze-out stage
 - $dN/dy \propto \exp(-m/T_{\text{chem}})$

Production mechanism of nuclei

- SHM (statistical hadronization model):
 - Ideal hadron resonance gas in thermal equilibrium at the chemical freeze-out stage
 - $dN/dy \propto \exp(-m/T_{\text{chem}})$

- Coalescence model
 - Nucleus production probability depends on the overlap of
 - Nucleus Wigner function
 - Nucleon distribution function in emission source
 - ► The closer hadrons in the phase-space ⇒ the higher probability to form a nucleus

K. J. Sun et al., Phys.Lett.B 792 (2019), 132-137 D. N. Liu et al., arXiv:2404.02701

Yuanzhe Wang || SQM 2024 || Strasbourg

Production of hypernuclei in ALICE

- Probes for production mechanism with strangeness content and size dependence
- Pb-Pb 2.76 TeV with Run 1 data
 - Both models can describe the result due to large uncertainties

Production of hypernuclei in ALICE

- Pb-Pb 2.76 TeV with Run 1 data
 - Both models can describe the result due to large uncertainties
- ➡ p-Pb 5.02 TeV with Run 2 data
 - Significant deviation for model predictions at low multiplicities
 - In better agreement with 2-body coalescence model

Yuanzhe Wang || SQM 2024 || Strasbourg

Production of hypernuclei in ALICE

- Probes for production mechanism with strangeness content and size dependence
- Pb-Pb 2.76 TeV with Run 1 data
 - Both models can describe the result due to large uncertainties
- ➡ p-Pb 5.02 TeV with Run 2 data
 - Significant deviation for model predictions at low multiplicities
 - In better agreement with 2-body coalescence model
- Further analysis required to figure out the system size dependence
- Measurements of the production of other hypernuclei

Hypernuclei with ALICE Run 2 Data

ALICE setup in Run 2

V0 Detector

- Centrality estimation
- Trigger

Inner Tracking System (ITS)

- Reconstruct track and vertex
- Time Projection Chamber (TPC)
 - Tracking
 - PID by measuring specific energy loss
- Time-Of-Flight detector (TOF)
 - PID with time of flight

 $1/N_{evts} d^2 N/dy dp_T (GeV/c)^2$

 10^{-2}

10⁻⁵

 10^{-6}

 10^{-7}

ALICE

ALICE Collaboration, arXiv:2311.11758

$^{3}_{\Lambda}H/^{3}He$ in Pb-Pb collisions

New!

05/06/2024

- Multiplicity dependence of ${}^3_{\Lambda}$ H / 3 He ratio
 - Consistent with Run 1 results within a 2σ confidence interval
 - SHM prediction stays constant at large multiplicities, while coalescence prediction is more sensitive to multiplicities
 - Well-described by the coalescence model, and compatible with the B_{Λ} value measured by ALICE
 - Shows a suppression for ³_AH / ³He ratio with smaller size of produced medium as suggested by the STAR results

ALICE Collaboration, arXiv:2405.19839 D. N. Liu et al., arXiv:2404.02701 STAR, arXiv:2310.12674

$^{3}_{\Lambda}$ H / 3 He in Pb-Pb collisions

• $p_{\rm T}$ -dependence of ${}^3_{\Lambda}{\rm H}$ / ${}^3{\rm He}$ ratio

ALICE Collaboration, arXiv:2405.19839 D. N. Liu et al., arXiv:2404.02701

- Different trends for Blast-Wave extrapolation and coalescence predictions
- Hard to draw a conclusion with the current experimental uncertainties (doable in Run 3!)

• First observation of ${}^{4}_{\Lambda}H(\frac{4}{\Lambda}\overline{H})$ at LHC energies

First signal of ${}^{4}_{\Lambda}$ He (${}^{4}_{\overline{\Lambda}}$ He) in heavy-ion collisions

Production of A = 4 hypernuclei in Pb-Pb collisions

- Production of ${}^4_{\Lambda}H$ and ${}^4_{\Lambda}He$
 - The SHM expected yields are enhanced by a factor ~ 4 with excited states
 - Both are in agreement with SHM predictions including contributions from feed-down effects

M. Schäfer et al., Phys. Rev. C 106 (2022), L031001

ALI-PREL-546586

Hypernuclei with ALICE Run 3 Data

05/06/2024

Yuanzhe Wang || SQM 2024 || Strasbourg

ALICE Upgrade for Run 3

New Inner Tracking System

$^{3}_{\Lambda}H$ production in pp collisions

- First measurement of $p_{\rm T}$ differential production of hypertriton in pp 13.6 TeV collisions
 - Results obtained from antimatter analysis only
 - Total yield can be estimated by extrapolation of the $p_{\rm T}$ spectrum

$^3_\Lambda H$ / Λ in pp collisions

- ${}^{3}_{\Lambda}H/\Lambda$ ratio in pp collisions
 - Twice better precision than Run 2
 - Compatible with Run 2 preliminary results and 2-body coalescence prediction

Performance with ALICE Run 3 data

- Heavier hypernuclei (A = 4) measurable in pp collisions
- Significant hypertriton peak in Run 3 Pb-Pb collisions

05/06/2024

►

►

23

ALICE

Flow measurement in Run 3

More precise flow measurement of ${}^{3}\text{He}$ in Run 3

Can we measure the flow of ${}^{3}_{\Lambda}$ H?

Flow of ${}^3_{\Lambda}H$ in Run 3 Pb-Pb collisions

- First measurement of elliptic flow of ${}^3_{\Lambda}H$
- v_2 increases with both centrality and p_T

Summary

- New results of ${}^3_{\Lambda}H$ yield with ALICE Run 2 and Run 3 data
 - First p_T differential measurements of hypertriton production in Pb-Pb 5.02 TeV and pp 13.6 TeV collisions
 - ³_AH / ³He ratio as a probe to distinguish between different nucleosynthesis mechanisms of hypernuclei, in favor of coalescence model
- Observation of A = 4 hypernuclei with ALICE Run 2 data
 - In agreement of SHM in consideration of feed-down effects, populating the ground states for both $^4_\Lambda H$ and $^4_\Lambda He$
- Outlook for the new Run 3 data:
 - Precise studies and more analyses with large statistics (target luminosity: 200 pb⁻¹ for pp, 7 nb⁻¹ for Pb-Pb)
 - Production of A = 4 hypernuclei in pp collisions

Thanks for your attention!

Backup

Properties of hypernuclei $\binom{3}{\Lambda}$ H)

• Recent measurements of ${}^3_\Lambda H$ shows $\tau({}^3_\Lambda H) \approx \tau(\Lambda)$, $B_\Lambda \sim$ hundreds keV

05/06/2024

Yuanzhe Wang || SQM 2024 || Strasbourg

Properties of hypernuclei ($^{4}_{\Lambda}$ H, $^{4}_{\Lambda}$ He)

• Both ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$ have a Λ binding energy of the order of MeV

The Hypernuclear Database, https://hypernuclei.kph.uni-mainz.de/

Invariant mass performance

ALICE

• Hypertriton in Run 2 Pb-Pb collisions

ALICE Collaboration, arXiv:2405.19839

Invariant mass performance

• Hypertriton in Run 3 pp collisions

