

Exploring the QCD phase diagram with collective flow at STAR

Shusu Shi for the STAR Collaboration

Central China Normal University V

Strangeness in Quark Matter 2024, June 3–7

Supported in part by

> Motivation **Experimental Setup Results and Discussion**

 \blacktriangleright Directed flow (v₁)

 \succ Elliptic flow (v₂)

Summary

Outline

Strangeness in Quark Matter 2024, June 3–7

Motivation

RHIC FXT: 3.0-7.7 GeV *u_B*: 750-420 MeV

RHIC 200 GeV and LHC

Study the properties of Quark-Gluon Plasma

Beam energy scan program Locate the first-order phase boundary Search for Critical Point

Anisotropic flow

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

Strangeness in Quark Matter 2024, June 3–7

Anisotropies in particle momentum distributions relative to the reaction plane

Initial spatial anisotropy \rightarrow Pressure gradient \rightarrow Momentum space anisotropy

$$\boldsymbol{E}\frac{\boldsymbol{d}^{3}\boldsymbol{N}}{\boldsymbol{d}p^{3}} = \frac{1}{2\pi}\frac{\boldsymbol{d}^{2}\boldsymbol{N}}{\boldsymbol{p}_{T}\boldsymbol{d}\boldsymbol{p}_{T}\boldsymbol{d}\boldsymbol{y}}\left(1 + \sum_{1}^{\infty} 2\boldsymbol{v}_{n}\cos[\boldsymbol{n}(\boldsymbol{\phi}-\boldsymbol{\psi}_{r})]\right)$$

$$v_1 = \cos(\phi - \psi_r) = \langle \frac{p_x}{p_T} \rangle$$

directed flow

$$v_2 = \cos[2(\phi - \psi_r)] = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle$$

elliptic flow

> Equation of State **Degree of Freedom**

P. Danielewicz, R. Lacey, Science 298 (2002) STAR, Phys. Rev. Lett. 118, 212301 (2017)

Motivation: Anti-flow of v₁

Bounce-off: Positive flow in positive rapidity \blacktriangleright Au+Au 3.83 GeV: Anti-flow of kaon at low p_T (< 0.7 GeV/c) \rightarrow Kaon potential?

Motivation: Elliptic flow

STAR, Phys. Rev. Lett. 92, 052302 (2004)

► 200 GeV: Partonic collectivity ► 3.0 GeV: Hadronic interaction dominates $ightarrow Transition in degree of freedom: 3.0 <math>\rightarrow$ 7.7 GeV?

Experimental Setup

Strangeness in Quark Matter 2024, June 3–7

STAR Detector Upgrade:

- 1) Inner-Time Projection Chamber
 - Better track quality, Larger acceptance
- 2) Endcap Time Of Flight
 ▶ Particle identification
- 3) Event Plane Detector
 - Event plane determination $(2.1 < |\eta| < 5.1)$

TPC

Good particle identification capability based on TPC dE/dx and TOF m²

Particle Identification

bTOF

3.0	3.2	3.5	5.9	4.5
750	700	670	635	590
 260	206	107	94	128

Strangeness in Quark Matter 2024, June 3–7

eTOF

A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020)

Particle Acceptance

Rapidity dependence of v₁

Measurements of v₁ vs. rapidity for π^{\pm} , K^{\pm} , K_S^0 , p, Λ at 3.0, 3.2, 3.5, and 3.9 GeV

E895, Phys. Rev. Lett. 85, 940 (2000)

> 3.9 GeV: anti-flow observed for K_S^0 at $p_T < 0.7$ GeV/c \geq Positive directed flow slope of K_S^0 at $p_T > 0.7$ GeV/c **Strong** p_T dependence of K_S^0 v₁ slope

Strangeness in Quark Matter 2024, June 3–7

Anti-flow of Kaon

pt dependence of v₁ slope

Ý,

Ϋ́Ι

> Anti-flow of π^+ and K_S^0 , K^{\pm} at low p_T

> Anti-flow could be explained by shadowing effect from spectators

Strangeness in Quark Matter 2024, June 3–7

Anisotropic flow

Strangeness in Quark Matter 2024, June 3–7

$$v_2 = \cos[2(\phi - \psi_r)] = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle$$

v2 reflect asymmetry on X-Y plane

STAR

pt dependence of v₂ at 3.0 - 4.5 GeV

 \succ Clear energy dependence for $v_2(p_T)$ from negative to positive: Shadowing effect

> JAM + baryonic Mean Field better describe the 3.2 GeV while underestimate 4.5 GeV data Baryonic Mean Field: p dependent Soft EoS, the nuclear incompressibility K = 210 MeV Strangeness in Quark Matter 2024, June 3–7

NCQ scaling of v₂ at 3 - 4.5 GeV

➢ NCQ scaling completely breaks below 3.2 GeV

► NCQ scaling becomes better gradually from 3.2 to 4.5 GeV

Energy dependence of $\langle v_2 \rangle$

In-plane

Negative to positive flow: $3 \rightarrow 4.5 \text{ GeV}$

 \succ The NCQ-scaled v₂ ratio of p/K^+ is close to 1 at 3.9 and 4.5 GeV, while it deviates largely from 1 at 3.2 GeV

STAR, Phys. Rev. C 88, 14902 (2013), Phys. Rev. C 103, 34908 (2021)

Strangeness in Quark Matter 2024, June 3–7

- > Anti-flow for K_S^0 , K^{\pm} and π^+ observed at low p_T (≤ 0.6 GeV/c) > Shadowing effect is important: anti-flow is not unique to the presence of a kaon potential
- \succ NCQ scaling breaks at 3.0 and 3.2 GeV, and gradually restores from 3.0 to 4.5 GeV
 - > Shadowing effect diminishes
 - > Dominance of partonic interactions at 4.5 GeV

Summary

