

Measurement of charge-dependent directed flow in STAR Beam Energy Scan (BES-II) **Au+Au and U+U Collisions**

Muhammad Farhan Taseer

for the STAR collaboration

June 04, 2024

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

Office of Science

Outline

- **Physics Motivation**
- **STAR Experiment at RHIC**
- **Directed Flow Results**
 - U+U Collisions @ 193 GeV New •••
 - **BES-II Au+Au Collisions @ 7.7 - 19.6 GeV**

2

- Ultra strong magnetic fields * (B~10¹⁸ Gauss) are expected at very early stages in Heavy **Ion Collisions**
- * **B** ~ Time dependent, decays rapidly as the medium (QGP) expands

PRX 14, 011028 [STAR]

Important to understand QGP evolution in the presence of initial * electromagnetic fields [1]

[1] U. Gürsoy et al. PRC 98,055201, PRC 89 054905

3

Directed Flow (v_1) describes the collective sideward motion of the produced particles and nuclear fragments \rightarrow carries information from the early stages of collision

- $v_1 = \langle \cos(\phi \Psi_{\rm EP}) \rangle / R \{ \Psi_{\rm EP} \}$
- **R** Event Plane Resolution
- **Event Plane azimuthal Angle**
- Azimuthal angle of outgoing particles

In the expanding QGP, quarks experience following electromagnetic effects [1]

- Hall Effect: F = q (v x B) by Lorentz Force
- **Coulomb Effect:** E generated by spectator nucleons
- **Faraday Induction:** decreasing **B** as spectators fly away

These electromagnetic forces provide opposite contribution of v_1 to particles with opposite charges

PRX 14, 011028 [STAR]

MUHAMMAD FARHAN TASEER

Δ

The splitting of v_1 between particle and antiparticle is measured as: *

$\Delta v_1 = dv_1^+/dy - dv_1^-/dy$

PRX 14, 011028 [STAR] 5

For inclusive charged particles, v_1 of Au+Au \approx Cu+Cu at a fixed centrality *

We shall present v_1 and Δv_1 in U+U, Au+Au and Isobar (RuRu + ZrZr) *

MUHAMMAD FARHAN TASEER

6

STAR Experiment

- Solenoidal Tracker at RHIC is a multipurpose detector with full azimuthal coverage
- **Upgrade of inner-TPC (Better Track Quality, Wide acceptance (**|η| < 1.5)
- **Event Plane Detector and Zero Degree Calorimeter used for event plane reconstruction**, **EPD** (2.1<|η|<5.1), **ZDC-SMD**(|η|>6.3)

The STAR detector

7

8

v₁(y) for Mid-Central U+U, Au+Au & Isobar

9

Slope (dv_1/dy vs centrality) for U+U, Au+Au & Isobar

- **Positive and Negative Pions (Kaons)** \rightarrow consistent within uncertainties *
- **Protons and antiprotons** \rightarrow observe system size dependence in mid-central collisions *

STAR

10

- Negative $\Delta(dv_1/dy)$ in peripheral collisions meet naive expectation from transport + EM * effects
- Δv_1 increases with decrease in beam energy *
- **Consistent with the dominance of (Faraday + Coulomb) effect in peripheral collisions** ** (other mechanisms such as baryon inhomogeneities are under investigation)

MUHAMMAD FARHAN TASEER

12

[T. Parida et al. arXiv:2305.8806]

v₁(p_T) for U+U Collisions

* For Proton (antiproton) \rightarrow Significant splitting in mid-central collisions (10-40)%

MUHAMMAD FARHAN TASEER

13

Pions (Kaons) \rightarrow consistent with zero within uncertainties

Protons \rightarrow mid-central collisions $\rightarrow \Delta v_1$ keep increasing with p_T peripheral collisions \rightarrow no oblivious p_T dependence

MUHAMMAD FARHAN TASEER

14

$\Delta v_1(p_T)$ for BES-II at 7.7 - 19.6 GeV

***** For peripheral collisions, Δv_1 is negative

Indication of larger splitting with increasing p_T as expected from theory
[U. Gürsoy et al. PRC 98,055201, PRC 89 054905]

Δv_1 from U+U Collision (Top RHIC Energy)

* We observe a significant difference for proton Δv_1 in mid-central collisions (10-40)% among three different collision systems

Proton Δv_1 : U+U > Au+Au > Isobar

- For Proton, Δv_1 changes sign in peripheral collisions as observed in the previous Au+Au and isobar data
- For pion and kaon all data points are consistent among three different collision systems at the same collision energy

Δv_1 from Au+Au Collision in BES-II •

- Splitting in Δv_1 increases with decreasing beam energies
- ***** More negative Δv_1 for lower collision energies \rightarrow consistent with longer lifetime of the electromagnetic field \rightarrow shorter lifetime of the fireball

16

JUNE 04, 2024

00

SQM 2024

Backup Slides

18

19

Resolution Values: -

 $U+U[9] = \{0.145016, 0.248548, 0.345383, 0.414196, 0.444727, 0.448302, 0.428285, 0.385058, 0.328569\}$ $Au+Au[9] = \{0.1563, 0.252126, 0.331136, 0.385756, 0.406247, 0.404069, 0.382588, 0.344916, 0.299311\}$ $lsobar[9] = \{0.0688674, 0.11634, 0.167703, 0.204098, 0.21988, 0.220753, 0.20985, 0.191277, 0.1727\}$

20

21

In peripheral collisions (50-80%), proton Δv_1 slope turns negative Significantly negative slopes (from linear fit) in all considered energies

TAR

22

$\Delta(dv_1/dy)$ for BES-II Energies

- * $\Delta(dv_1/dy)$ in peripheral collisions is more negative at lower collision energies for each species
- ✤ The lifetime of the fireball seems shorter at lower energies which predict the longer life of magnetic field

ecies of magnetic field

23