

Measurements of $p-\Xi^-$ Correlation Function in $\sqrt{s_{NN}}$ = 200 GeV Isobar (Zr+Zr and Ru+Ru) and Au+Au Collisions with the STAR Detector

Boyang Fu

for the STAR collaboration

Central China Normal University

In part supported by

 \Rightarrow Motivation

- \Leftrightarrow Two-particle Correlations
- \Leftrightarrow The STAR Experiment
- \doteqdot Data Analysis and L-L Fits
- \Rightarrow Results
- rightarrow Summary

- > Why study $p-\Xi^{-}(n-\Xi^{-})$ correlations ?
 - Important to study the Hyperon-nucleon interactions and explore the inner structure of the neturon star.
 - □ Related to the possible existence of H-dibaryon in S=-2 sector.
- Lattice QCD potentials (HAL-QCD Collaboration) Predicted an attractive interaction in p-E⁻ and it is observed in p-Pb and p-p collisions at ALICE.

Two-Particle Correlations

R. Lednicky, et al. Sov.J.Nucl.Phys.35(1982)770

L. Michael, et al. Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

STAR Detector

Time Projection Chamber (TPC)

- ✓ Charged particle tracking
- ✓ Momentum reconstruction
- \checkmark Particle identification from
 - ionization energy loss (dE/dx)
- ✓ Pseudorapidity coverage $|\eta| < 1.0$

Time-of-Flight (TOF)

- ✓ Particle identification m^2
- ✓ Pseudorapidity coverage $|\eta| < 0.9$

Particle Identification & Reconstruction

☆ p, π^- particles are identified by TPC and TOF ☆ Reconstruct $\Xi^-(\overline{\Xi}^+)$ via helix swimming method

Phys. Rev. C 102 (2020) 34909

Two-track Effects

Track merging & splitting: track vs. track from $\Xi^{-}(\overline{\Xi}^{+})$ decay

Additional Effects

Results: $p-\Xi^-$ **Correlation Functions**

 \Rightarrow CFs show enhancement at low k*

More pronounced in peripheral collisions

 \Rightarrow In p- Ξ^- correlation, two spin states appear:

$$C_{p-\Xi} = \frac{1}{4}C_{S=0,singlet} + \frac{3}{4}C_{S=1,triplet}$$

 \Rightarrow Correlation function:

$$C(\boldsymbol{k}^*) = \int d^3 r^* S(\boldsymbol{r}^*) |\Psi(\boldsymbol{r}^*, \boldsymbol{k}^*)|^2$$

☆ Scattering amplitude (include Coulomb):

$$f_0(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - \frac{2}{a_c}h(\eta) - ik^*A_c(\eta)\right]^{-1}$$

 f_0 : scattering length a_c : Bohr radius $\eta = (k^* a_c)^{-1}$ d_0 : effective range A_c , h: Coulomb interaction

- \bigcirc Different spin state have different f_0 and d_0
- \bigcirc Different system have same f_0 and d_0

R. Lednicky, et al. Sov.J.Nucl.Phys.35(1982)770

\Rightarrow In p- Ξ^- correlation, two spin states appear:

$$C_{p-\Xi} = \frac{1}{4}C_{S=0,singlet} + \frac{3}{4}C_{S=1,triplet}$$

Total spin	Baryon pair	a_0 (fm)	$r_{\rm eff}$ (fm)
J = 0	$p\Xi^-$	$-1.25(0.03)(^{+0.12}_{-0.00}) - i2.00(0.40)(^{+0.16}_{-0.31})$	$3.7(0.3)(^{+0.0}_{-0.1}) - i2.4(0.2)(^{+0.1}_{-0.3})$
	$n \Xi^0$	$-2.76(0.63)(^{+0.33}_{-0.66}) - i0.15(0.12)(^{+0.00}_{-0.03})$	$1.5(0.3)(^{+0.0}_{-0.1}) - i0.1(0.0)(^{+0.0}_{-0.0})$
	$\Lambda\Lambda$	$-0.99(0.30)(^{+0.00}_{-0.17})$	$4.9(0.70)(^{+0.1}_{-0.5})$
J = 1	$p\Xi^-$	$-0.47(0.08)(^{+0.11}_{-0.09}) - i0.0(0.00)(^{+0.00}_{-0.00})$	$6.7(0.7)(^{+1.4}_{-0.9}) + i0.0(0.1)(^{+0.0}_{-0.0})$
	$n \Xi^0$	$-0.47(0.08)(^{+0.11}_{-0.09})$	$6.8(0.7)(^{+1.4}_{-0.9})$

$$f_0 = -a_0, \ d_0 = r_{eff}$$

 \Rightarrow Spin averaged method: does not distinguish between spin states (have same CF)

$$f_0^{ave} = \frac{1}{4} f_{0,singlet} + \frac{3}{4} f_{0,triplet} = 0.66^{+0.11}_{-0.07}$$

$$d_0^{ave} = \frac{1}{4} d_{0,singlet} + \frac{3}{4} d_{0,triplet} = 5.95^{+1.05}_{-0.71}$$

PHYSICAL REVIEW C 105, 014915 (2022) PoS LATTICE2016 (2017) 116 Nucl. Phys. A 998 (2020) 121737 Nuclear Physics A 967 (2017) 856–859

Bayesian Analysis Method

<u>https://github.com/chunshen1987/bayesian_analysis</u> Phys. Lett. B 833 (2022) 137348

<u>https://github.com/chunshen1987/bayesian_analysis</u> Phys. Lett. B 833 (2022) 137348

☆ Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method

☆ Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method

☆ UrQMD + HAL QCD model is consistent with data

Particle phase space provided by UrQMD
Interaction potential provided by HALQCD

PHYSICAL REVIEW C 105, 014915 (2022) M. Bleicher et al., J. Phys. G 25, 1859 (1999)

*Linear fit with all points

 $\Rightarrow R_G$: Spherical Gaussian source

 \Leftrightarrow Centrality dependence: $R_G^{central} > R_G^{peripheral}$

 $\Rightarrow R_G$ increase as charged multiplicity increase for these collisions

PHYSICAL REVIEW C 79, 034909 (2009)

Results: Strong Interaction Parameters

- ☆ First experimental measurements in heavy-ion collisions of strong interaction parameters in $p-\Xi^-$ pairs
- ☆ f_0 and d_0 are consistent with those extracted from UrQMD + HAL QCD model within 1sigma

*Edge of f_0 - d_0 contours are shown with Bezier smooth to improve the visibility

Results: Strong Interaction Parameters

- ☆ First experimental measurements in heavy-ion collisions of strong interaction parameters in p- Ξ^- pairs
- ☆ f_0 and d_0 are consistent with those extracted from UrQMD + HAL QCD model within 1sigma
- ☆ The f_0 measured from isobar (Zr+Zr and Ru+Ru) and Au+Au collisions are consistent with the prediction of HAL QCD_____

*Edge of f_0 - d_0 contours are shown with Bezier smooth to improve the visibility

Summary

- ☆ Systematical measurements of p-Ξ⁻ correlation functions in isobar (Zr+Zr and Ru+Ru) and Au+Au collisions at 200 GeV at STAR
- ☆ The extracted source radii increase as charged multiplicity increase for different collisions
- ☆ The first experimental measurements of strong interaction parameters (f_0 , d_0) in p- Ξ^- pairs
 - \odot The f_0 is consistent with HAL QCD predictions within 1σ
 - Experimental evidence of shallow attractive interaction in p-E⁻ pairs

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

Thank you !

SQM2024, June 5th 2024, Starsbourg

