

Q

Flavor hierarchy of parton energy loss in quark-gluon plasma from a Bayesian analysis

Wen-Jing Xing (邢文静) Shandong university

In collaboration with Prof. Shanshan Cao and Prof. Guang-You Qin

Outline of my talk

WJX, Cao, Qin, Phys.Lett.B 850 (2024) 138523

- Introduction
- Perturbative framework for high p_T hadron production and medium modification
- □ The extracted hierarchy of parton energy loss from Bayesian analysis
- **D** Summary

Jet quenching: high- p_T hadron suppression

- The nuclear modification factor R_{AA} : $R_{AA} = \frac{1}{N_{coll}} \frac{dN^{AA} / d^2 p_T dy}{dN^{pp} / d^2 p_T dy}$
- Expressing R_{AA} in terms of parton energy loss $\langle \Delta p_T \rangle$:

$$R_{\rm AA}(p_T) = \frac{P_{\rm pp}(p_T + \Delta p_T)}{P_{\rm pp}(p_T)}$$

ALICE, PLB 2011

Parton-medium interaction

Perturbative QCD calculation gives:

Radiative energy loss:

$$\langle \Delta E_{rad} \rangle \sim \alpha_s C_R \widehat{q} L^{\beta}$$
, $(C_q = C_F, C_g = C_A)$

• $\langle \Delta E_{rad}^g \rangle / \langle \Delta E_{rad}^q \rangle \sim C_A / C_F.$

Flavor hierarchy of high- p_T hadron R_{AA}

• Constrain the flavor hierarchy of parton energy loss.

Theoretical framework for high- p_T hadron production

$$\mathbf{pp:} \qquad \frac{d\sigma_{\mathrm{pp}\to hX}}{dp_{\mathrm{T}}^{h}} = \sum_{j} \int dp_{\mathrm{T}}^{j} dz \frac{d\hat{\sigma}_{\mathrm{pp}\to jX}}{dp_{\mathrm{T}}^{j}} (p_{\mathrm{T}}^{j}) D_{j\to h}(z) \delta\left(p_{\mathrm{T}}^{h} - zp_{\mathrm{T}}^{j}\right)$$

$$\mathbf{WJX, Cao, Qin, Xing, PLB 2020}$$

$$\mathbf{AA:} \qquad \frac{1}{\langle N_{\mathrm{coll}} \rangle} \frac{d\sigma_{\mathrm{AA}\to hX}}{dp_{\mathrm{T}}^{h}} = \sum_{j} \int dp_{\mathrm{T}}^{j} dx dz \frac{d\hat{\sigma}_{\mathrm{p'p'}\to jX}}{dp_{\mathrm{T}}^{j}} (p_{\mathrm{T}}^{j}) W_{\mathrm{AA}}(x) D_{j\to h}(z) \delta\left(p_{\mathrm{T}}^{h} - z(p_{\mathrm{T}}^{j} - x\langle \Delta p_{\mathrm{T}}^{j} \rangle)\right)$$

- $\left< \Delta p_T^j \right>$ is the averaged parton energy loss for hard parton j.
- $W_{AA}(x)$ is the parton energy loss distribution with $x = \Delta p_T^j / \langle \Delta p_T^j \rangle$.

Different works to extract $\langle \Delta p_T \rangle$ and $W_{AA}(x)$

$$\frac{1}{\langle N_{\rm coll} \rangle} \frac{d\sigma_{\rm AA \to hX}}{dp_{\rm T}^h} = \sum_j \int dp_{\rm T}^j dx dz \frac{d\hat{\sigma}_{{\rm p}'{\rm p}' \to jX}}{dp_{\rm T}^j} (p_{\rm T}^j) W_{\rm AA}(x) D_{j \to h}(z) \delta\left(p_{\rm T}^h - z(p_{\rm T}^j - x\langle \Delta p_{\rm T}^j \rangle)\right)$$

- Taking $W_{AA}(x)$ from BDMPS medium-induced gluon spectrum, the $\langle \Delta p_T \rangle$ is extracted from R_{AA} data of hadrons (h^{\pm} , D, J/ψ).
 - F. Arleo, PRL 2017.
- Using a general ansatz of the jet W_{AA}(x), the flavor-averaged jet W_{AA}(x) and ⟨ΔP_T⟩ is extracted from R_{AA} data of single inclusive and γ-triggered jets.
 He, Pang and Wang, PRL 2019.
- Parton $W_{AA}(x)$ and $\langle \Delta p_T \rangle$ of both gluons and charm quarks is extracted from R_{AA} data of I/ψ .

– Zhang, Liao, Qin, Xing, Science Bulletin 2023

• A simultaneous data-driven analysis on $\langle \Delta p_T \rangle$ of all parton species (g, q, c, b) is still absent. 6

Parametric form of $\langle \Delta p_T \rangle$ and W_{AA} in QGP

• The $\langle N_{coll} \rangle$ -rescaled cross section of hadron production in AA collision :

$$\frac{1}{|N_{\rm coll}\rangle} \frac{d\sigma_{\rm AA \to hX}}{dp_{\rm T}^h} = \sum_j \int dp_{\rm T}^j dx dz \frac{d\hat{\sigma}_{{\rm p}'{\rm p}' \to jX}}{dp_{\rm T}^j} (p_{\rm T}^j) W_{\rm AA}(x) D_{j \to h}(z) \delta\left(p_{\rm T}^h - z(p_{\rm T}^j - x\langle\Delta p_{\rm T}^j\rangle)\right)$$

• The parametric p_T -dependence of $\langle \Delta p_T \rangle$ for gluons (g), light quarks (q), charm quarks (c) and bottom quarks (b) is :

$$\left\langle \Delta p_{\mathrm{T}}^{j} \right\rangle = C_{j} \beta_{g} p_{\mathrm{T}}^{\gamma} \mathrm{log}(p_{\mathrm{T}})$$

Notice that $C_g = 1$ and C_q , C_c , C_b represents the $\langle \Delta p_T \rangle$ ratio relative to gluon's.

• The parton energy loss distribution is:

$$W_{\rm AA}(x) = \frac{\alpha^{\alpha} x^{\alpha - 1} e^{-\alpha x}}{\Gamma(\alpha)}$$

• $\theta = (\beta_g, C_q, C_c, C_b, \gamma, \alpha)$ is to be calibrated in Bayesian analysis.

Bayes' theorem

 $P(\boldsymbol{\theta}|\text{data}) \propto P(\boldsymbol{\theta}) P(\text{data}|\boldsymbol{\theta})$

• Prior: uniform in the region of

 $[\beta_g, C_q, C_c, C_b, \gamma, \alpha] \subset [(0, 10), (0, 1), (0, 1), (0, 1), (-0.15, 0.5), (0, 15)]$

• Likelihood: Gaussian form

$$P\left(\text{data}|\boldsymbol{\theta}\right) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{i}}} e^{-\left[y_{i}(\boldsymbol{\theta}) - y_{i}^{\exp}\right]^{2} / (2\sigma_{i}^{2})}$$

Hadron *R_{AA}*: Prior vs. Posterior

Hadron R_{AA}: Prior vs. Posterior

Hadron *R_{AA}*: Prior vs. Posterior

Posterior distribution of model parameters

	with $\sigma_{ m exp}$	with $0.5\sigma_{\rm exp}$
β_g	(1.646, 2.56)	(1.96, 2.39)
C_q	(0.129, 0.65)	(0.226, 0.454)
C_c	(0.3, 0.567)	(0.344, 0.459)
C_b	(0.065, 0.277)	(0.124, 0.207)
γ	(0.137, 0.378)	(0.184, 0.295)
α	(5.287, 9.061)	(6.266, 8.401)

$$\langle \Delta p_{\rm T}^g \rangle = \beta_g p_{\rm T}^\gamma \log(p_{\rm T})$$
$$\langle \Delta p_{\rm T}^q \rangle = C_q \beta_g p_{\rm T}^\gamma \log(p_{\rm T})$$

> Bayesian calibration gives $1/C_q \sim (1.53, 7.75)$ with σ_{exp} and $1/C_q \sim (2.20, 4.42)$ with 0. $5\sigma_{exp}$, which are both consistent with the Casimir scaling factor $C_A/C_F = 2.25$.

Bayesian extraction of $\langle \Delta p_T \rangle$ for g, q, c and b

- > The extracted parton energy loss has a clear flavor hierarchy, $\langle \Delta E_g \rangle > \langle \Delta E_g \rangle \sim \langle \Delta E_c \rangle > \langle \Delta E_b \rangle$.
- > Direct extraction of flavor dependence of parton energy loss in QGP from data.
- Provides a stringent test on pQCD calculation of parton-medium interaction.

Summary

WJX, Cao, Qin, Phys.Lett.B 850 (2024) 138523

- **>** By combining a NLO order perturbative QCD calculation of the parton production, a general ansatz of the parton energy loss function and parton fragmentation functions, we can calculate the nuclear modification of both heavy and light flavor hadrons over a wide p_T regime.
- By applying a Bayesian model-to-data analysis, we have performed a first simultaneous extraction of energy loss of gluons, light quarks, charm quarks and bottom quarks inside the QGP.
- > The constrained parton energy loss exhibit a clear flavor hierarchy, $\langle \Delta E_g \rangle > \langle \Delta E_q \rangle \sim \langle \Delta E_c \rangle > \langle \Delta E_b \rangle$ inside the QGP, and is consistent with perturbative QCD expectation.
- We find that a reduction of the data uncertainties can significantly improve the precision of the extracted parton energy loss.

Thank You !

The following are Back-up pages

High p_T hadron productions in pp @ NLO

WJX, Cao, Qin, Xing, PLB 2020

 \succ Gluon fragmentation dominates h^{\pm} production at p_T < 50 GeV.

Solution Gluon fragmentation contributes to over 40% D^0 and 50% B production up to p_T > 50 GeV.

Bayesian calibration to pseudo-data

Bayesian calibration to pseudo-data

	$oldsymbol{ heta}_0$	with $\sigma_{ m exp}$	with $0.5\sigma_{\mathrm{exp}}$
β_g	2.35	(1.565, 2.614)	(1.862, 2.49)
C_q	0.55	(0.266, 0.928)	(0.344, 0.789)
C_c	0.5	(0.362, 0.725)	(0.398, 0.61)
C_b	0.2	(0.063, 0.331)	(0.102, 0.278)
γ	0.15	(0.095, 0.303)	(0.125, 0.245)
α	7.0	(4.349, 9.146)	(5.01, 8.561)

Bayesian analysis to pseudo-data can recover the "true" values of model parameters.

Halving the erro bars of pseudo-data can improve the precision of extracted parameters.