

Light-flavour particle production as a function of transverse spherocity with ALICE

Adrian Nassirpour, on behalf of the ALICE Collaboration (Sejong University, South Korea)

Motivation - Strangeness Production

174

 (\mathcal{D})

- ALICE strangeness enhancement results are published in 2016
 - > Out-of-the box PYTHIA 8 is incompatible with the data

 \bigcirc

Motivation - Strangeness Production

 \bigcirc

• ALICE strangeness enhancement results are published in 2016

Out-of-the box PYTHIA 8 is incompatible with the data

- Strangeness enhancement: historical QGP signature in heavy-ion collisions
- However, the origins of this effect are unclear in smaller systems
 - Moreover, the main fraction of enhancement is driven within pp collisions

 \odot

Motivation - Strangeness Production

 (Ω)

- ALICE strangeness enhancement results are published in 2016
 - Out-of-the box PYTHIA 8 is incompatible with the data
- Strangeness enhancement: historical QGP signature in heavy-ion collisions
- However, the origins of this effect are unclear in smaller systems
 - Moreover, the main fraction of enhancement is driven within pp collisions

 In this context, how can we improve our understanding of strange hadron production?

 \odot

Transverse Spherocity $S_0^{p_T=1}$

- Idea: classify high-multiplicity events based on event topology
 - We select top 1% multiplicity pp events, where QGP-like effects arise

M2024

 (\mathcal{D})

Transverse Spherocity $S_0^{p_T=1}$

- Idea: classify high-multiplicity events based on event topology
 - We select top 1% multiplicity pp events, where QGP-like effects arise
 - Jet-like: Back-to-back "jet-like" events
 - Particle production mainly driven by hard physics

 \bigcirc

- Isotropic: Azimuthally isotropic events
 - Particle production driven by multiple softer collisions

$$S_0^{p_{\mathrm{T}}=1} = \frac{\pi^2}{4} \min_{\hat{n}} \sum_{i} \left(\frac{|\hat{p}_{\mathrm{T},i} \times \hat{n}|}{N_{\mathrm{trk}}} \right)$$

 \bigcirc

Transverse Spherocity $S_0^{p_T=1}$

- Idea: classify high-multiplicity events based on event topology
 - We select top 1% multiplicity pp events, where QGP-like effects arise
 - Jet-like: Back-to-back "jet-like" events
 - Particle production mainly driven by hard physics
 - Isotropic: Azimuthally isotropic events
 - Particle production driven by multiple softer collisions
- Several ALICE contributions based on preliminary results...

 \odot

ALIC

Transverse Spherocity $S_0^{p_T=1}$

Light-flavor particle production in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV as a function of transverse spherocity

- Idea: classify high-multiplicity events based on event topology
 - We select top 1% multiplicity pp events, where QGP-like effects arise
 - Jet-like: Back-to-back "jet-like" events
 - Particle production mainly driven by hard physics
 - Isotropic: Azimuthally isotropic events
 - Particle production driven by multiple softer collisions
- Several ALICE contributions based on preliminary results...
 - Finally wrapped up in a paper,! https://doi.org/10.1007/JHEP05(2024)184

 \bigcirc

Adrian Nassirpour, SQM 2024

 (Ω)

ALIC

Transverse Spherocity $S_0^{p_T=1}$ - Multiplicity Estimation

Estimate of mid-rapidity

activity

• When using $N_{\text{tracklets}}^{|\eta| < 0.8}$ in conjunction with spherocity selection, we observe:

Adrian Nassirpour, SQM 2024

 \bigotimes

(0)

Transverse Spherocity $S_0^{p_T=1}$ - Multiplicity Estimation

S@M2024

 \bigcirc

- When using $N_{\text{tracklets}}^{|\eta| < 0.8}$ in conjunction with spherocity selection, we observe:
 - Large shift in $< p_{\rm T} >$ •
 - Very small (\approx 10%) shift in yield

 \bigcirc

 $\langle p_{\rm T} \rangle ({\rm GeV/c})$ 0.9 ALICE, pp, √s = 13 TeV $N_{\rm ch} \ge 10, p_{_{\rm T}} \ge 0.15 \; {\rm GeV}/c, \, |\eta| < 0.8$ $N_{\text{tracklets}}^{|\eta|<0.8}$ Jet-like [0-1]% Jet-like [0-10]% 0.8 Isotropic [0-10]% Isotropic [0-1]% $\pi^++\pi^-$ 0.7 0.6 20 25 30 35 5 10 15 40 $\langle dN_{\pi}/dy \rangle$ ALIC (\mathfrak{O})

11

Transverse Spherocity $S_0^{p_T=1}$ - Multiplicity Estimation

- When using $N_{\text{tracklets}}^{|\eta|<0.8}$ in conjunction with spherocity selection, we observe:
 - Large shift in $< p_{\rm T} >$
 - Very small (≈10%) shift in yield
 - The inverse relationship is obtained when estimating multiplicity at forward rapidities

TapiditiesOVOM: Event-class with
forward-rapidity event activity0 $(2.8 < \eta < 5.1), (-3.7 < \eta - 1.7)$

 (Ω)

 (Ω)

12

Transverse Spherocity $S_0^{p_T=1}$ - Multiplicity Estimation

 (Ω)

- When using $N_{\text{tracklets}}^{|\eta|<0.8}$ in conjunction with spherocity selection, we observe:
 - Large shift in $< p_{\rm T} >$
 - Very small (≈10%) shift in yield
 - The inverse relationship is obtained when estimating multiplicity at forward rapidities
 - Autocorrelation is a feature, not a bug!

 \odot

- Normally, high-multiplicity midrapidity measurements are biased towards jets
- However, in our case, the jet-like selection is able to capture these local fluctuations!
 - The exact two paradigms we want to contrast

13

 \bigcirc

Transverse Spherocity $S_0^{p_T=1}$ - Multiplicity Estimation

- When using $N_{\text{tracklets}}^{|\eta|<0.8}$ in conjunction with spherocity selection, we observe:
 - Large shift in $< p_{\rm T} >$
 - Very small (≈10%) shift in yield

 \odot

- The inverse relationship is obtained when estimating multiplicity at forward rapidities
- Autocorrelation is a feature, not a bug!
 - Normally, high-multiplicity midrapidity measurements are biased towards jets
 - However, in our case, the jet-like selection is able to capture these local fluctuations!
 - The exact two paradigms we want to contrast

- PYTHIA is able to qualitatively predict shape of distribution observed in data
- EPOS-LHC and Herwig 7.2 showcase large deviations

 \mathcal{O}

14

Results:
$$S_0^{p_T=1}$$
 X-to- π ratios
 $N_{\text{tracklets}}^{|\eta|<0.8}$: 0 - 1% (I) + $S_0^{p_T=1}$: 0 - 10%

- Jet-like events: $p_{\rm T}$ differential suppression of strange particles •
 - \succ Balances out at high- $p_{\rm T}$ for protons

Q

Consistent suppression of strange particles

Results:
$$S_0^{p_T=1}$$
 X-to- π ratios
 $N_{\text{tracklets}}^{|\eta|<0.8}: 0 - 1\% (I) + S_0^{p_T=1}: 0 - 10\%$

- Jet-like events: $p_{\rm T}$ differential suppression of strange particles
 - \succ Balances out at high- $p_{\rm T}$ for protons
 - Consistent suppression of strange particles
 - Also the case for presented mesons
- MC models are not able to capture absolute trends
 - However, interplay to high-multiplicity reference is generally well-described

 \bigcirc

 \bigcirc

16

 \bigotimes

Results:
$$S_0^{p_T=1}$$
 X-to- π ratios
 $N_{\text{tracklets}}^{|\eta|<0.8}: 0 - 1\%$ (I) + $S_0^{p_T=1}: 0 - 10\%$

- Jet-like events: $p_{\rm T}$ differential suppression of strange particles
 - \succ Balances out at high- $p_{\rm T}$ for protons
 - Consistent suppression of strange particles
 - Also the case for presented mesons
- MC models are not able to capture absolute trends
 - However, interplay to high-multiplicity reference is generally well-described

 \bigcirc

• Large differences in model predictions of absolute yield

 \bigotimes

17

 \bigotimes

Results:
$$S_0^{p_T=1}$$
 X-to- π ratios
 $N_{\text{tracklets}}^{|\eta|<0.8}: 0 - 1\% (I) + S_0^{p_T=1}: 0 - 10\%$

- Jet-like events: $p_{\rm T}$ differential suppression of strange particles
 - \succ Balances out at high- $p_{\rm T}$ for protons
 - Consistent suppression of strange particles
 - Also the case for presented mesons
- MC models are not able to capture absolute trends
 - However, interplay to high-multiplicity reference is generally well-described
 - Large differences in model predictions of absolute yield

 $N_{\text{tracklets}}^{|\eta|<0.8}: 0 - 1\% (I) + S_0^{p_{\text{T}}=1}: 0 - 1\%$

- Extreme suppression of jet-like particle production
 - Resonances excluded due to statistical limitations

Results:
$$S_0^{p_T=1}$$
 X-to- π ratios
 $N_{\text{tracklets}}^{|\eta|<0.8}$: 0 - 1% (I) + $S_0^{p_T=1}$: 0 - 10%

- Jet-like events: $p_{\rm T}$ differential suppression of strange particles
 - \succ Balances out at high- $p_{\rm T}$ for protons
 - Consistent suppression of strange particles
 - Also the case for presented mesons
- MC models are not able to capture absolute trends
 - However, interplay to high-multiplicity reference is generally well-described
 - Large differences in model predictions of absolute yield

 $N_{\text{tracklets}}^{|\eta|<0.8}: 0 - 1\% (I) + S_0^{p_{\text{T}}=1}: 0 - 1\%$

• Extreme suppression of jet-like particle production

 \bigcirc

Resonances excluded due to statistical limitations

Q 0.

 \bigcirc

Adrian Nassirpour, SQM 2024

6 8 10 *p*_ (GeV/*c*)

 (\mathfrak{O})

Results: $S_0^{p_T=1} p_T$ -differential particle ratios

- Overall trend similar between p/π, Λ/K_S^0 , and $\Xi/φ$
 - Ratios between "equivalent" strangeness content

 \bigcirc

- In the context of radial flow*:
 - Heavy baryons boosted to high- p_T
 - Depletion of baryons at low-p_T is missing

Results: $S_0^{p_T=1} p_T$ -differential particle ratios

Results: $S_0^{p_T=1}$ integrated particle ratios

- Significant suppression of yields in Jet-like events
 - Proton is largely unmodified •
 - Approximately 20% effect for Ξ
 - Strength is ordered in strangeness ٠

23

Results: $S_0^{p_T=1}$ integrated particle ratios

- Significant suppression of yields in Jet-like events
 - Proton is largely unmodified
 - Approximately 20% effect for Ξ
 - Strength is ordered in strangeness
- Quantitative estimate:
 - Allows for precise MC-to-Data comparison
 - PYTHIA 8.2 Ropes predicts qualitative trend, but not correcting strangeness ordering

26

Results: $S_0^{p_T=1}$ integrated particle ratios

- Significant suppression of yields in Jet-like events
 - Proton is largely unmodified
 - Approximately 20% effect for Ξ
 - Strength is ordered in strangeness
- Quantitative estimate:
 - Allows for precise MC-to-Data comparison
 - PYTHIA 8.2 Ropes predicts qualitative trend, but not correcting strangeness ordering
 - Same applies for EPOS
 - Herwig 7.2 and PYTHIA 8.2 Monash are unable to capture trends

 \bigcirc

27

 (\mathfrak{O})

Summary

- How homogenous are high-multiplicity pp collisions?
 - > Topologies driven by soft physics are consistent with the average high-multiplicity event
 - "Jet-like" topologies seem to be clear outliers

 \bigcirc

Summary

- How homogenous are high-multiplicity pp collisions?
 - > Topologies driven by soft physics are consistent with the average high-multiplicity event
 - "Jet-like" topologies seem to be clear outliers
- Can we delineate the effects between hard/soft physics?
 - \succ $S_0^{p_{\rm T}=1}$ can be used to select strangeness enhanced/suppressed events
 - Hard, jet-like events seem to produce strange hadrons at a much lower rate than the average high-multiplicity event
 - \blacktriangleright ϕ meson exhibits features of an (|S|=0) particle

 (\mathfrak{O})

 \odot

Summary

- How homogenous are high-multiplicity pp collisions?
 - > Topologies driven by soft physics are consistent with the average high-multiplicity event
 - "Jet-like" topologies seem to be clear outliers
- Can we delineate the effects between hard/soft physics?
 - \succ $S_0^{p_{\rm T}=1}$ can be used to select strangeness enhanced/suppressed events
 - Hard, jet-like events seem to produce strange hadrons at a much lower rate than the average high-multiplicity event
 - $\blacktriangleright \phi$ meson exhibits features of an (|S|=0) particle
- Outlook: several new $S_0^{p_T=1}$ ALICE analyses currently underway!
 - \blacktriangleright Heavy-flavor sector: Λ_c resonance and D-meson studies as a function of $S_0^{p_T=1}$
 - > $S_0^{p_{\rm T}=1}$ -dependent two-particle correlation studies

 \bigcirc

32

 \odot

BACKUP SLIDES

Transverse spherocity - $p_{\rm T}$ spectra

- Pion production is suppressed at low-pt, but enhanced at high-pt for jetty events
- Vice-versa for Isotropic events
- Suggests general hardening of the spectra in Jetty events $\Delta \phi \approx 0, \pi$

Transverse spherocity - $p_{\rm T}$ spectra

- Pion production is suppressed at low-pt, but enhanced at high-pt for jetty events
- Vice-versa for Isotropic events
- Suggests general hardening of the spectra in Jetty events $\Delta \phi \approx random$

 $\Delta \phi \approx 0, \pi$

• The same trends are seen for all measured particle species

Transverse spherocity - $p_{\rm T}$ spectra

Identified Vs Unidentified Hadrons

- There is a non-trivial difference in the $S_{\rm O}$ measurement for Identified and Unidentified hadrons

- Primary Unidentified hadrons enter both the yield extraction and $\,S_{O}^{}\,$
- This also applies to $\pi/K/P$
- But this does NOT apply to **E**!
- ϕ enters twice! ($K^+ K^-$)

<u>Unweighed Transverse Spherocity</u> $S_0^{p_T=1}$

• $S_0^{p_T=1}$ is measured as S_0 , but only considers the angular component.

<u>Unweighed Transverse Spherocity</u> $S_0^{p_T=1}$

• $S_0^{p_T=1}$ is measured as S_0 , but only considers the angular component.

 $S_0^{p_T=1}$ MC Studies - $S_0^{p_T=1}$ vs S_0

Qualtitatively similar Nch/MPI distributions

 $S_0^{p_T=1}$ MC Studies - $S_0^{p_T=1}$ vs S_0

Adrian Nassirpour, SQM 2024

0.4

0.6

0.8

Spherocity Value

0.2

¢_⊤

0.5

0

Strangeness Enhancement in Different Topologies: Transverse Spherocity S_o

- Probing the strangeness production as a function of the azimuthal event topology.
- Disentangle event into two types:
 - Jetty: Back-to-Back "jet-like" events
 - Particle production mainly driven by hard physics
 - Isotropic: Azimuthally isotropic events.
 - Particle production driven by multiple soft collisions.

$$S_0^{p_T=1}$$
 MC Studies – Charged Vs Neutral

ALICE Detector and Rapidity Acceptance.

J.Phys.Conf.Ser. 455 (2013) 012010

ALICE detector n acceptance TPC (full tracking) SPD outer layer dN_{ch}/dŋ (Pythia) SPD inner layer V0A A DM T0 C TO A -2 2 Pseudorapidity η Nucl.Phys.B Proc.Suppl. 179-180 (2008) 196-201