Investigating the hidden strangeness content of exotic resonance with ALICE

Prottay Das (for the ALICE Collaboration)

National Institute of Science Education and Research A CI of Homi Bhabha National Institute HBNI,

Jatni- 752050, INDIA

Outline

Introduction

✓ Resonances

- Exotic resonance $f_0(980)$
- Exotic resonance f₁(1285)
- Glueball search

ALICE detector

- ✓ Data set and analysis details
- Results

✓ Summary

https://phys.org/news/2022-07-lhcb-exotic-particles-pentaquark-first-ever.html

Introduction

Volume 8, number 3

https://home.cern/news/news/physics/lhcb-discovers-three-new-exotic-particles

Ordinary hadrons: Baryons and mesons

Exotic hadrons: Unusual composition of guarks and anti-guarks such as tetraguarks, pentaquarks etc.

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way" $^{1-3}$, we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotonic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone 4). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the Fspin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only and treat the matrix elements of the weak, electromagnetic, and gravitational interactions by means

ber $n_t - n_{\bar{t}}$ would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and z = -1, so that the four particles d⁻, s⁻, u⁰ and b⁰ exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "guarks" 6) g and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

M.Gell-Mann. Phys.Lett. 8 (1964) 214-215

To validate and test the predictions of QCD

05/06/24

Resonances

- Short lived particles that decay via strong interaction
- Reconstructed using invariant mass method
- The width of the peak determines the particles' lifetime
- Open problem: Quark content of several resonances in the range ~1-2 GeV/c²

Phys. Lett. B 828 (2022) 137013

	ρ (770)	K* (892)	f _o (980)	ф(1О2О)	f ₁ (1285)	Σ(1385)	Λ(1520)	Ξ(153Ο)	f _o (1710)
Quark contents	$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$	d s	???	SS	???	uus	uds	dds	???

Exotic resonance f₀ (980)

Properties of f_0 (980)		Physics	Predictions	References	Current study	
Mass (MeV/c²)	980±20	Quark	(1) Diquark (Linear	Chuan-Hung Chen,		
Width (MeV/c ²)	10-100		composition	and d quarks)	(2003), 094011	\checkmark
Spin	0		(2) Tetraquark (Consist of	N.N. Achasov et al., Phys. Rev. D 103,		
Charge	0					
Parity	1			strange quarks)	014010 (2021), Fef van Beveren <i>et</i>	\checkmark
Decay mode	ππ				<i>al.,</i> Phys.Lett.B 495	
B.R. (%)	46±6			(3) Molecule	(2000) 500-502, Hiwa A. Ahmed and C. W. Xiao, Phys. Rev. D 101 (2020),	
Quark composition	???					×
PRL 111 (2013). 062001					094034	

Exotic resonance f₁ (1285)

Properties of f₁ (1285)

Mass (MeV/c²)	1285±0.5	Physics	Predictions	References	Current study
Width (MeV/c²)	22±1.1	Quark	(1) Diquark (Linear combination of u and d quarks)	A.A. Osipov <i>et al.,</i> Phys.Rev.D 96 (2017), 054012	×
Spin	1	composition			
Charge	0				
Parity	1		(2) Tetraquark (Consist of strange quarks)	Y. Kanada-En'yo et al	 ✓ X
Decay mode	Κ ^ο _s Κπ			Phys.Rev.D71 (2005), 094005	
B.R. (%)	2.25±0.1		(3) Molecule	F. Aceti et al.,	
Quark composition	???			Phys.Lett. B750 (2015) 609-614	

Glueball search

✓ Particles composed entirely of gluons

Phys.Rev.Lett.101 (2008) 112003

 \checkmark Lattice QCD predicts the existence of scalar glueballs in the mass range 1550-1750 MeV/ c^2

Properties of f ₂	(1270)	Properties of f ₂ (1525)			Properties of f ₀ (1710)	
Mass (MeV/c²)	1275±0.8	Mass (MeV/c²)	1525±2.4		Mass (MeV/c²)	1710±8
Width (MeV/c²)	185.8±2.8	Width (MeV/c ²)	112		Width (MeV/c²)	123±12
Spin	2	Spin	2		Spin	0
Charge	0	Charge	0		Charge	0
Parity	1	Parity	1		Parity	1
Decay mode	K ^o sK ^o s	Decay mode	K ^o sK ^o s		Decay mode	K ^o _s K ^o s

ALICE detector

- VO detectors (VOA & VOC)
- Centrality estimator
- Trigger

JINST 8 (2013) P10016

- Inner Tracking System (ITS)
- Tracking
- Vertexing

JINST 3 (2008) S08002

- <u>Time Projection Chamber (TPC)</u>
- Tracking and vertexing
- Momentum measurement
- Particle Identification (PID)

Nucl.Instrum.Meth.A 622 (2010) 316-367

- ✓ <u>Time Of Flight (TOF)</u>
- Particle Identification (PID)

CERN-LHCC-2000-012

Dataset and analysis details

System	pp and p-Pb
Center of mass energy (TeV)	<mark>13 (pp)</mark> , 5.02 (pp and p-Pb)
No. of events	O (~10 ⁹), O (~10 ⁸)
Reconstruction technique	Invariant mass method $M = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{i}\right)^{2}}$
Rapidity (y)	< 0.5
Resonances	f ₀ (980), f ₁ (1285), f ₂ (1270), f ₂ (1525) and f ₀ (1710)

Measurement of f₀ (980)

Signal extraction carried out using invariant mass method

✓ A clear signal of f₀(980) is observed

Phys. Lett. B 846 (2023) 137644 Phys. Lett. B 853 (2024) 138665

Quark content of f₀ (980)

 \checkmark f₀/ π : Canonical statistical model underestimates the ratio

 \checkmark Measurements disfavor |S| = 2 quark configuration of f_0

|S| = Total number of strange/anti-strange quarks inside the hadron

Volodymyr Vovchenko et al., Phys. Rev. C 100 (2019) 054906 Phys. Lett. B 846 (2023) 137644 Phys. Lett. B 853 (2024) 138665

Quark structure of f₀ (980)

Measurement of f₁(1285)

Quark content and structure of f₁(1285)

|S| = Total number of strange/anti-strange quarks inside the hadron

For baseline:

- φ is a double strange particle in γ_s-CSM
- $\checkmark \phi/\pi$ is consistent with |S| = 2

- f_1/π is consistent with |S| = 0 within 1σ
- Disfavors tetraquark structure

Volodymyr Vovchenko et al., Phys. Rev. C 100 (2019) 054906 PRL 112 (2014), 091802

Glueball hunt

Possible glueball candidate in K^os K^os decay channel

Invariant mass distribution modelled using Relativistic Breit-Wigner + Maxwell-Boltzmann distribution

Summary

- ALICE continues to measure a varied set of exotic resonances
- \checkmark First measurement of inclusive f₀ (980) and f₁ (1285) resonances in ALICE
- Comparison of experimental data with thermal model calculations rules out the presence of strange quarks in f₀ (980) and f₁ (1285) resonances
- No Cronin like enhancement is observed for f₀ (980), indicating an ordinary meson structure
- Promising signal of scalar glueball candidate f₀ (1710) in ALICE
- More exciting results await with large statistics Run 3 data

Thank you

Backup