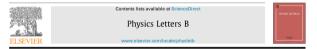


Disoriented Isospin Condensates as source of anomalous kaon correlations at LHC

Mayank Singh


In Collaboration with Joe Kapusta and Scott Pratt

Based on Phys.Rev.C 107 1, 014913 (2023), Phys.Rev.C 109 3, L031902 (2024)

Kaon correlations from ALICE

ALICE collaboration reported a surprising measurement in 2022

Physics Letters B 832 (2022) 137242

Neutral to charged kaon yield fluctuations in Pb – Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~{\rm TeV}$

Chuck for spelates

ALICE Collaboration*

ARTICLE INFO

ABSTRACT

Article history: Received 21 January 2022 Received in revised form 13 May 2022 Accepted 7 June 2022 Available online 9 June 2022 Editor: M. Doser We present the first measurement of event-by-event fluctuations in the kaon sector in Pb - Pb collisions at $\sqrt{s_{min}} = 2.57$ fevel with the ALGE detector at the ULC the robot fluctuation correlator v_{min} is used to evaluate the magnitude of fluctuations of the robot spectration and charged latent, aveil as the robot fluctuation correlator v_{min} is used as the magnitude of fluctuation of the robot spectration and charged latent, aveil as the fluctuation V_{min} and V_{min} are compared with Hillows. Add/PT and EVS-UE predictions, as predomphily dependent, the results are compared with Hillows. Add/PT and EVS-UE predictions are compared with PT and EVS-UE predictions are compared with PT and EVS-UE predictions are compared with Hillows. Add/PT and EVS-UE predictions are compared with PT and PT and

© 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³. While the correlator $\nu_{\rm dyn}[K^+, K^-]$ exhibits a scaling approximately in inverse proportion of the charged particle multiplicity, $\nu_{\rm dyn}[K_S^0, K^{\pm}]$ features a significant deviation from such scaling.

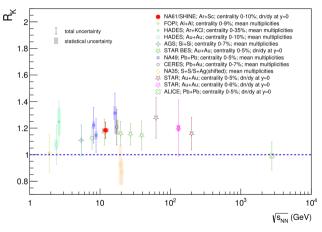
Vanderbilt University

 $\nu_{\rm dyn}$

S. Gavin and J. I. Kapusta, Phys. Rev. C 65, 054910 (2002)

- + $\nu_{\rm dyn}[{\rm A,B}]$ measures how detection of particles of type A or B is correlated with itself than with the other type
- Specifically

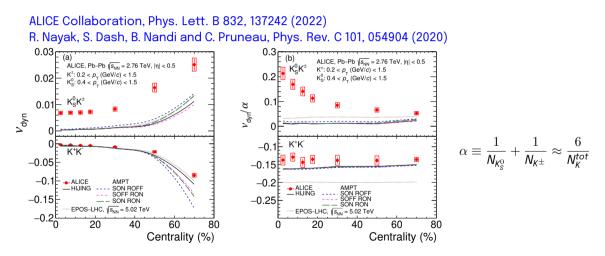
$$u_{\mathrm{dyn}}[\mathbf{A}, \mathbf{B}] = \mathbf{R}_{\mathbf{A}\mathbf{A}} + \mathbf{R}_{\mathbf{B}\mathbf{B}} - 2\mathbf{R}_{\mathbf{A}\mathbf{B}}$$


where R_{AB} are robust covariences

$${\it R}_{AB} = rac{\langle N_A N_B
angle - \langle N_A
angle \langle N_B
angle - \langle N_A
angle \delta_{AE}}{\langle N_A
angle \langle N_B
angle}$$

- For uncorrelated particles, $\textit{R}_{\textit{AA}}=\textit{R}_{\textit{BB}}=\textit{R}_{\textit{AB}}=0$ and consequently, $\nu_{\rm dyn}=0$
- If $\nu_{\rm dyn} > 0$, detection of one particle biases the next particle to be of the same type. It is opposite for $\nu_{\rm dyn} < 0$

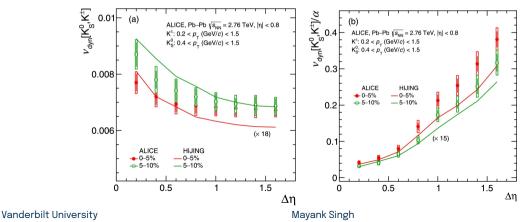
Vanderbilt University


Distinct from global isospin imbalance

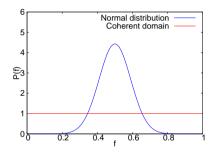
NA61/SHINE Collaboration, arXiv: 2312.06572

Vanderbilt University

 $u_{
m dyn}$



Vanderbilt University


 $u_{
m dyn}$

ALICE Collaboration, Phys. Lett. B 832, 137242 (2022) R. Nayak, S. Dash, B. Nandi and C. Pruneau, Phys. Rev. C 101, 054904 (2020)

• They also extend over a unit in rapidity

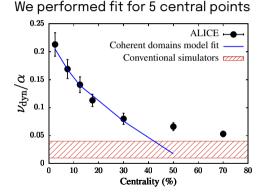
- The measured $\nu_{\rm dyn}$ has three distinct anomalies
 - 1. It is unusually large
 - 2. Scaled $u_{\rm dyn}$ grows with multiplicity
 - 3. Correlations stretch over a unit in rapidity
- The systems appears to have an unusual neutral kaon fraction over large volumes

Coherent domains seem unavoidable

Isospin fluctuations from coherent domains

S. Gavin and J. I. Kapusta, Phys. Rev. C 65, 054910 (2002)

- Suppose we have domains of flat neutral kaon fraction
- If the number of domains is >2, $\nu_{\rm dyn}[\textit{K}_{\mathcal{S}}^{0},\textit{K}^{\pm}]$ is given by

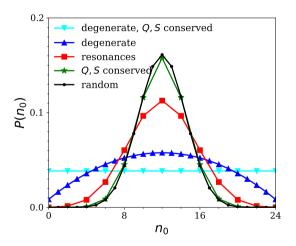

$$\nu_{\rm dyn} = 4\beta_{\rm K} \left(\frac{\beta_{\rm K}}{3N_{\rm d}} - \frac{1}{N_{\rm K}^{\rm tot}}\right)$$

where β_{K} is he fraction of all kaons that come from condensate domains, N_{d} is the number of such domains

• The relation is derived from folding the distributions of kaons from condensates and thermal sources. For multiple condensate sources, P(f) again approaches a Gaussian by the Central Limit Theorem

Vanderbilt University

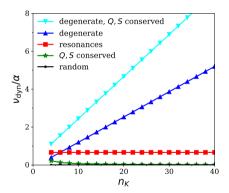
Isospin fluctuations from coherent domains



For reference energy density $\epsilon_{\zeta} = 25 \text{ MeV/fm}^3$, only V_d changes

Centrality	N _d	V_d (fm ³)	β_{K}
0-5 %	9.32	1120	0.302
5-10 %	7.29	821	0.283
10-15 %	6.02	640	0.267
15-20 %	4.67	476	0.256
20-40 %	2.88	258	0.225
40-60 %	1.20	82	0.172

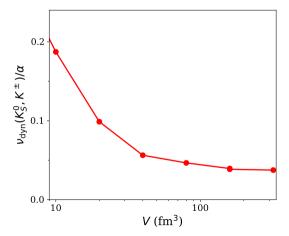
Vanderbilt University


Simple kaon systems

- Probability distribution of neutral fraction of kaons in a degenerate state is flat
- Above result holds when I₃ = 0 irrespective of whether overall isospin is unconstrained or constrained to be in isosinglet. This result is also holds when the isospin state is disoriented as in DCC

Vanderbilt University

Simple kaon systems


- These values of $\nu_{\rm dyn}/\alpha {\rm are}$ for a single domain in isolation and not what is measured in experiments
- These needs to be folded with other domains and thermal kaons to calculate experimental observables
- Only large number of degenerate kaons can explain the data.

Vanderbilt University

Hadron Gas Model

S. Pratt and R. Steinhorst, Phys. Rev. C 102, 064906 (2020)

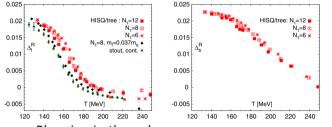
- We set up a box at a given temperature and fill it with hadrons of many species consistent with canonical ensemble. They are then allowed to decay
- $\nu_{\rm dyn}$ decreases with increasing volumes. It is consistent with data for very small volumes, which are not relevant for heavy-ion collisions

Vanderbilt University

2+1 flavor Linear Sigma Model

J. Schaffner-Bielich and J. Randrup, Phys. Rev. C 59, 3329 (1999) The field potential U is expressed in terms of the 3×3 bosonic field matrix M as

$$U(\mathbf{M}) = -\frac{q}{2}\mu^{2} \operatorname{Tr}(\mathbf{M}\mathbf{M}^{\dagger}) + \lambda \operatorname{Tr}(\mathbf{M}\mathbf{M}^{\dagger}\mathbf{M}\mathbf{M}^{\dagger}) + \lambda' [\operatorname{Tr}(\mathbf{M}\mathbf{M}^{\dagger})]^{2} - \mathbf{c}(\det \mathbf{M} + \det \mathbf{M}^{\dagger}) \\ - f_{\pi}m_{\pi}^{2}\sigma - \left(\sqrt{2}f_{\kappa}m_{\kappa}^{2} - \frac{1}{\sqrt{2}}f_{\pi}m_{\pi}^{2}\right)\zeta$$


 σ meson is a $\bar{u}u + \bar{d}d$ scalar and the ζ meson is an $\bar{s}s$ scalar. Assuming only those two condense, we have

$$U(\sigma,\zeta) = -\frac{1}{2}\mu^{2}(\sigma^{2}+\zeta^{2}) + \frac{1}{2}\lambda(\sigma^{4}+2\zeta^{4}) + \lambda'(\sigma^{2}+\zeta^{2})^{2} - c\sigma^{2}\zeta - f_{\pi}m_{\pi}^{2}\sigma^{2} - \left(\sqrt{2}f_{\kappa}m_{\kappa}^{2} - \frac{1}{\sqrt{2}}f_{\pi}m_{\pi}^{2}\right)\zeta$$

Vanderbilt University

Energy of Condensation

- In high temperature limit, in absence of condensation $\sigma = \zeta = 0$. We also have vacuum values of $\sigma_{\text{vac}} = f_{\pi}$ and $\zeta_{\text{vac}} = \sqrt{2}f_{\mathcal{K}} \frac{1}{\sqrt{2}}f_{\pi}$
- We get σ and ζ value at chiral symmetry restoration temperature from lattice

HotQCD Collaboration, Phys. Rev. D 85, 054503 (2012)

σ_{160}	\approx	$0.25\sigma_{\rm vac}$
ζ_{160}	\approx	$0.85\zeta_{ m vac}$

a

$$egin{aligned} & \mathcal{J}_{2+1}(\sigma_{
m vac},\zeta_{
m vac}) &= -265~{
m MeV/fm^3} \ & \mathcal{J}_{2+1}(\sigma_{160},\zeta_{160}) &= -234~{
m MeV/fm^3} \ & \Delta \mathcal{U}_{2+1} &= 31~{
m MeV/fm^3} \ & \Delta \mathcal{U}_{2+1} &= 31~{
m MeV/fm^3} \ & {
m Mayank Singh} \end{aligned}$$

Vanderbilt University

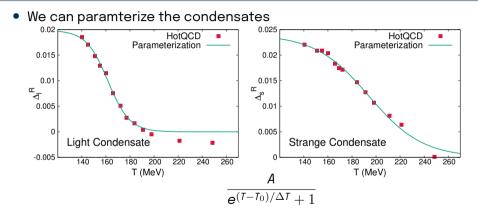
14/20

Disoriented Isospin Condensate (DIC)

- It is always assumed that $\langle u\bar{u}\rangle = \langle d\bar{d}\rangle$. What if their relative magnitudes fluctuated at finite temperature? Nothing in QCD prohibits this
- This will be a fluctuation between the isosinglet $\langle u\bar{u}\rangle + \langle d\bar{d}\rangle$ and isotriplet $\langle u\bar{u}\rangle \langle d\bar{d}\rangle$. The excitation of latter corresponds to triplet $a_0(980)$ meson
- If the condensate is all $\langle u\bar{u}\rangle$, then at the time of cooling it will combine with strange quarks to form charged kaons. Similarly all $\langle d\bar{d}\rangle$ will form neutral kaons
- This will lead to the same kaon neutral fraction phenomenology as above

Disoriented Isospin Condensates (DIC)

- Is it plausible? Thermodynamic energy cost can be calculated in the linear sigma model
- Scalar field matrix *M* has diagonal elements (σ_u, σ_d, ζ) (as opposed to (σ, σ, ζ)) where

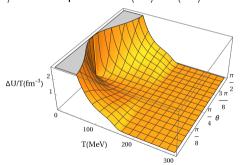

$$\begin{array}{rcl} \sigma_u &=& -\langle u\bar{u}\rangle/\sqrt{2}c'\\ \sigma_d &=& -\langle d\bar{d}\rangle/\sqrt{2}c'\\ \zeta &=& -\langle s\bar{s}\rangle/\sqrt{2}c' \end{array}$$

• We can calculate the energy associated with these fluctuations

$$U(M) = -\frac{1}{2}\mu^{2}(\sigma_{u}^{2} + \sigma_{d}^{2} + \zeta^{2}) + \lambda'(\sigma_{u}^{2} + \sigma_{d}^{2} + \zeta^{2})^{2} + \lambda(\sigma_{u}^{4} + \sigma_{d}^{4} + \zeta^{4}) - 2c\sigma_{u}\sigma_{d}\zeta - \sqrt{2}c'(m_{u}\sigma_{u} + m_{d}\sigma_{d} + m_{s}\zeta)$$

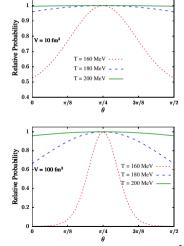
Vanderbilt University

Disoriented Isospin Condensates (DIC)



Light : $A = 0.01984, T_0 = 161.7 \text{MeV}, \Delta T = 9.009 \text{MeV}$ Strange : $A = 0.02402, T_0 = 194.0 \text{MeV}, \Delta T = 22.25 \text{MeV}$

Vanderbilt University


Energy cost of DIC

• Let us define $\sigma_u = \sigma \cos \theta$ and $\sigma_d = \sigma \sin \theta$. The $\theta = \pi/4$ corresponds to $\langle u\bar{u} \rangle = \langle d\bar{d} \rangle$

 We can also calculate the relative probability of such a state = e^{-V \DU/T}

Outlook

- It would be illuminating to see similar measurements at 5.02 TeV Pb+Pb collisions at LHC and at 200 GeV Au+Au collisions at RHIC. More differential measurement in rapidities and azimuthal angles are needed See the poster by Anjaly Sasikumar Menon (ALICE)
- Maybe Lattice QCD can provide guidance
- Need a theory for evolution of DIC fluctuations in conjunction with the hydrodynamic medium
- Are we seeing the melting and refreezing of the QCD vacuum?

- ALICE has measured isospin correlations in the kaon sector which are anomalously large, have anomalous centrality dependence and extend to over a unit in rapidity
- These measurements cannot be explained by any known means without invoking kaon condensation (least likely), Disoriented Chiral Condensates (less likely), or Disoriented Isospin Condensates (most likely)
- DCC involve disorientation in the strange quark sector while DIC involve disorientation in the light quark sector
- The DIC would show similar anomaly in particles rich in u/\bar{u} vs those rich in d/\bar{d} , like Ξ^0 and Ξ^- and is a testable, verifiable and refutable idea.