Bayesian constraints on the high density QCD EoS from Heavy-ion collision data

Phys Rev Lett 131 (20), 202303

Manjunath Omana Kuttan, Jan Steinheimer, Kai Zhou, Horst Stöcker

Equation of State in heavy-ion collisions

- $\Box \sqrt{s_{\rm NN}} \lessapprox 15 {\rm GeV}$: large interpenetration time
- No clear separation of compression and expansion phases
- Dynamics in the initial non-equilibrium phase will influence the Observables

How can we consistently describe the entire evolution by a single EoS?

UrQMD cascade

- Microscopic non-equilibrium description
 - hadrons on classical trajectories
 - stochastic binary scatterings
 - color string formation
 - resonance excitation and decays
- interactions based on scattering cross sections
- default setup
 - effective EoS: Hadron Resonance Gas
- Non-trivial interactions can be added through QMD approach

Density dependent EoS in UrQMD

density dependent potential enters QMD equations:

$$\dot{\mathbf{r}}_i = rac{\partial \mathbf{H}}{\partial \mathbf{p}_i}, \quad \dot{\mathbf{p}}_i = -rac{\partial \mathbf{H}}{\partial \mathbf{r}_i}.$$

- density dependent potential energy term
- **D** potential energy $V(n_B)$ is related to the pressure as:

$$P(n_B) = P_{\rm id}(n_B) + \int_0^{n_B} n' \frac{\partial U(n')}{\partial n'} dn', \ U(n_B) = \frac{\partial \left(n_B \cdot V(n_B) \right)}{\partial n_B}$$

 $P_{id}(n_B) \Rightarrow$ pressure of an ideal Fermi gas of baryons $U(n_B) \Rightarrow$ single particle potential,

Constraining the potential energy \implies constraining the EoS

Recovering the physics in final state data

Transport overview talk , S. A. Bass

• We now have a model that consistently uses a single EoS for the entire evolution!

• Employ modern statistical tools and learn what the data tell about the EoS!

Parameterizing the EoS

- < 2n₀, CMF model-fit A. Motormenko et al., PRC 103.5 (2021)
 reproduces nuclear matter properties
 - E₀~-15.2 MeV, K₀~267 MeV, S₀~31.9 MeV
- $>2n_0, 7^{\text{th}}$ degree polynomial
 - h=-22.07 MeV to match CMF at $2n_0$
- reasonable constraints exist upto 2n₀
 - flow data,
 - incompressibility data
 - bayesian analysis

P. Danielewicz, Et al Science 298, 1592 (2002), H. Kruse, Et al. Phys. Rev. Lett. 54, 289 (1985), Y. Wang, Et al. PLB 778, 207 (2018), S. Huth et al., Nature 606, 276 (2022)

Potentials generated using the polynomial parameterization

We constrain
$$\boldsymbol{ heta}=\{ heta_1, heta_2,..., heta_7\}$$

* a c² parameterization used in D. Oliinychenko, Et al *PRC* 108 (2023) 3, 034908

Data to constrain the EoS

- Proton observables (mid rapidity)
- Elliptic flow : 10 data points
 - ➢ E895, CERES, FOPI, STAR, HADES
 - Mid-central collisions
- Transverse kinetic energy: 5 data points
 - ➢ E917, NA49, STAR
 - Central collisions

The data $\mathbf{D} = \{v_2^{exp}, \langle m_T \rangle^{exp} - m_0\}$ is used to constrain the parameters $\boldsymbol{\theta} = \{\theta_1, \theta_2, ..., \theta_7\}$

Calculating the likelihood: the bottleneck $P(\theta|\mathbf{D}) \propto P(\mathbf{D}|\theta) P(\theta)$

Testing the pipeline

- Tight constraints up to $4n_0$
 - mean closely follows "ground-truth"
- MEAN and MAP closely follows "ground-truth" upto 6n₀

Results from experimental data

- **Tight constraints upto 4n_0**
- MEAN, MAP suggests stiff EoS
- No phase transition

Results from experimental data

The extracted EoSs

- better v₂ predictions at high energies (without 2 data points)
 - but also results in lower $< m_{T} > -m_{0}$

- large <m_T>-m₀ values for the stiff EoS (extracted using all data points)
- possible tension in data at ~4 GeV!

Measurement uncertainty? or model limitation?

Further tests

- \Box V₁ data not used in inference
- \Box 15 data points provide best fit to v₁ data
 - stiff EoS

- □ 15 points, predicts a stiff EoS
 - consistent with astrophysical constraints
 - broad peak structure
- \square 13 points, drastic drop in c_s^2
 - □ first order phase transition

Outlook

- Explored bayesian constraints on the high density QCD EoS
- \Box observables provide tight constraints upto $3n_0$
- strong dependence on choice of observables for > 3n₀
 tension in data at ~4 GeV
- measurement uncertainty or model limitation?

Phys Rev Lett 131 (20), 202303

For stricter, robust constraints on the EoS below $4n_0$, significant improvements and consistency in flow measurements are necessary for $E_{lab} = 2-15 \text{ AGeV}$

BES-II, fxt data ! Future CBM @FAIR measurements?

SQM 2024, Strasbourg

Backup slides

Potentials for training GP models

GP models: performance

GP models: performance

SQM 2024, Strasbourg

Closure tests

SQM 2024, Strasbourg

Experimental data

80 Page 14 of 21

Eur. Phys. J. A (2023) 59:80

Fig. 11 Compilation of directed and elliptic flow measurements as a function of the subtracted centre-of-mass energy $\sqrt{s_{NN}} - 2m_N$. Shown as red points are the slope of v_1 at mid-rapidity (left panel), $dv_1/dy'|_{y'=0}$, and the p_t integrated v_2 at mid-rapidity (right panel) for protons in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV (10 - 30 % centrality). These results are compared to data in the same or similar centrality.

trality ranges in Au+Au or Pb+Pb collisions for nuclei with Z = 1 (INDRA [7], FOPI [7,37,38] Plastic Ball [39,40]), for protons (FOPI [38,41], EOS/E895 [42,43], E877 [44], NA49 [45], STAR [46–48], NA61/SHINE [49]) and for inclusive charged particles (E877 [21,50], CERES [51], WA98 [52], STAR [53,54], PHOBOS [55])

- low energy v₂ : FOPi, HADES (<3 GeV)
- 3 GeV: STAR
- higher energies E895 (AGS)

- <m_T> low energies: E917 (AGS)
- 7.7 GeV STAR
- remaining: NA49

(NA49), Phys. Rev. C 73, 044910 (2006).

Inference

- Proton observables (mid rapidity)
 - Elliptic flow : 10 data points
 - Mid-central collisions
 - Transverse kinetic energy: 5

data points

Prior, further tests

Microscopic transport with density dependent potential

- Non-equilibrium MD part of UrQMD is used
- ✤ UrQMD:
 - > Propagation of hadrons on classic trajectories
 - stochastic binary scattering , color string formation, resonance excitation and decays
 - Imaginary part of interactions:
 - geometric interpretation of cross section
 - Experiment, detailed balance
 - Hadronic cascade
 - effective EoS of HRG with respective dof
- Real part of interactions in UrQMD
 - QMD + density dependent potential
 - Unlike other mean field models, QMD is an n-body theory of interactions between n nucleons

A density dependent potential enters QMD equations

 $\dot{\mathbf{r}}_i = rac{\partial \mathbf{H}}{\partial \mathbf{p}_i}, \quad \dot{\mathbf{p}}_i = -rac{\partial \mathbf{H}}{\partial \mathbf{r}_i}.$

The total hamiltonian function is sum over all hamiltonians of the i baryons

$$\mathbf{H} = \sum_i H_i, \;\; H_i = E_i^{kin} + V_i$$

This include KE and total potential energy V $\mathbf{V} = \sum_i V_i \equiv \sum_i Vig(n_B(r_i)ig)$

The change in momentum for baryon 'i' is then

The local interaction density $n_B^{}$ at $r_k^{}$ is calc by assuming each particle as gaussian wave packet

$$egin{aligned} n_B(r_k) &= n_k = \sum_{j,j
eq k} n_{j,k} \ &= ig(rac{lpha}{\pi}ig)^{3/2} \sum_{j,j
eq k} B_j \exp\left(-lpha(\mathbf{r_k}-\mathbf{r_j})^2
ight) \ &lpha$$
=1/2L, L= 2 fm²

 $\dot{\mathbf{p}}_{i} = -\frac{\partial \mathbf{H}}{\partial \mathbf{r}_{i}} = -\frac{\partial \mathbf{V}}{\partial \mathbf{r}_{i}} \ n_{\{i,j\}} \equiv n_{B}(r_{\{i,j\}}) \begin{bmatrix} \mathbf{F}_{\mathbf{r}_{i}} \\ \mathbf{P}_{i} \end{bmatrix} = -\left(\frac{\partial V_{i}}{\partial n_{i}} \cdot \frac{\partial n_{i}}{\partial \mathbf{r}_{i}}\right) - \left(\sum_{j \neq i} \frac{\partial V_{j}}{\partial n_{j}} \cdot \frac{\partial n_{j}}{\partial r_{i}}\right) \begin{bmatrix} \mathbf{F}_{\mathbf{r}_{i}} \end{bmatrix}$

Force on ith baryon depends on change in potential energy at point r_i due to local gradient of $n_B(r_i)$ and change in potential at positions r_i of all baryons j due to change in r_i

-solved in timestep 0.2fm/c

$$P(n_B) = P_{
m id}(n_B) + \int_0^{n_B} n' rac{\partial U(n')}{\partial n'} dn' \ , \ U(n_B) = rac{\partialig(n_B\cdot V(n_B)ig)}{\partial n_B} \ .$$

$$\mu_B'(n_B)=\mu_B^{id}(n_B)+U(n_B)$$

$$\epsilon(n_B) = -P(n_B) + \mu_B' n_B + sT$$